Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 1;365(Pt 1):147–155. doi: 10.1042/bj20020231

The actin-severing activity of cofilin is exerted by the interplay of three distinct sites on cofilin and essential for cell viability.

Kenji Moriyama 1, Ichiro Yahara 1
PMCID: PMC1222676  PMID: 12113256

Abstract

Cofilin/actin-depolymerizing factor is an essential and conserved modulator of actin dynamics. Cofilin binds to actin in either monomeric or filamentous form, severs and depolymerizes actin filaments, and speeds up their treadmilling. A high turnover rate of F-actin in actin-based motility seems driven largely by cofilin-mediated acceleration of directional subunit release, but little by fragmentation of the filaments. On the other hand, the filament-severing function of cofilin seems relevant for the healthy growth of cells. In this study, we have characterized three mutants of porcine cofilin to elucidate the molecular mechanism that underlies the filament-severing activity of cofilin. The first mutant could neither associate with actin filaments nor sever them, whereas it effectively accelerated their treadmilling and directional subunit release. The second mutant bound to actin filaments, but failed to sever them and to interfere with phalloidin binding to the filament. The third mutant could associate with actin filaments and sever them, although with a very reduced efficacy. Of these mutant proteins, only the last one was able to rescue Deltacof1 yeast cells and to induce thick actin bundles in mammalian cells upon overexpression. Therefore, the actin-severing activity of cofilin is an essential element in its vital function and suggested to be exerted by co-operation of at least three distinct sites of cofilin.

Full Text

The Full Text of this article is available as a PDF (308.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe H., Obinata T., Minamide L. S., Bamburg J. R. Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development. J Cell Biol. 1996 Mar;132(5):871–885. doi: 10.1083/jcb.132.5.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aizawa H., Fukui Y., Yahara I. Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J Cell Sci. 1997 Oct;110(Pt 19):2333–2344. doi: 10.1242/jcs.110.19.2333. [DOI] [PubMed] [Google Scholar]
  3. Aizawa H., Sutoh K., Tsubuki S., Kawashima S., Ishii A., Yahara I. Identification, characterization, and intracellular distribution of cofilin in Dictyostelium discoideum. J Biol Chem. 1995 May 5;270(18):10923–10932. doi: 10.1074/jbc.270.18.10923. [DOI] [PubMed] [Google Scholar]
  4. Aizawa H., Sutoh K., Yahara I. Overexpression of cofilin stimulates bundling of actin filaments, membrane ruffling, and cell movement in Dictyostelium. J Cell Biol. 1996 Feb;132(3):335–344. doi: 10.1083/jcb.132.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belmont L. D., Patterson G. M., Drubin D. G. New actin mutants allow further characterization of the nucleotide binding cleft and drug binding sites. J Cell Sci. 1999 May;112(Pt 9):1325–1336. doi: 10.1242/jcs.112.9.1325. [DOI] [PubMed] [Google Scholar]
  6. Blondin L., Sapountzi V., Maciver S. K., Renoult C., Benyamin Y., Roustan C. The second ADF/cofilin actin-binding site exists in F-actin, the cofilin-G-actin complex, but not in G-actin. Eur J Biochem. 2001 Dec;268(24):6426–6434. doi: 10.1046/j.0014-2956.2001.02592.x. [DOI] [PubMed] [Google Scholar]
  7. Carlier M. F., Laurent V., Santolini J., Melki R., Didry D., Xia G. X., Hong Y., Chua N. H., Pantaloni D. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 1997 Mar 24;136(6):1307–1322. doi: 10.1083/jcb.136.6.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fedorov A. A., Lappalainen P., Fedorov E. V., Drubin D. G., Almo S. C. Structure determination of yeast cofilin. Nat Struct Biol. 1997 May;4(5):366–369. doi: 10.1038/nsb0597-366. [DOI] [PubMed] [Google Scholar]
  9. Galkin V. E., Orlova A., Lukoyanova N., Wriggers W., Egelman E. H. Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J Cell Biol. 2001 Apr 2;153(1):75–86. doi: 10.1083/jcb.153.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gunsalus K. C., Bonaccorsi S., Williams E., Verni F., Gatti M., Goldberg M. L. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J Cell Biol. 1995 Dec;131(5):1243–1259. doi: 10.1083/jcb.131.5.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hatanaka H., Ogura K., Moriyama K., Ichikawa S., Yahara I., Inagaki F. Tertiary structure of destrin and structural similarity between two actin-regulating protein families. Cell. 1996 Jun 28;85(7):1047–1055. doi: 10.1016/s0092-8674(00)81305-7. [DOI] [PubMed] [Google Scholar]
  12. Iida K., Moriyama K., Matsumoto S., Kawasaki H., Nishida E., Yahara I. Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low-M(r) actin-binding and depolymerizing protein. Gene. 1993 Feb 14;124(1):115–120. doi: 10.1016/0378-1119(93)90770-4. [DOI] [PubMed] [Google Scholar]
  13. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  14. Lappalainen P., Drubin D. G. Cofilin promotes rapid actin filament turnover in vivo. Nature. 1997 Jul 3;388(6637):78–82. doi: 10.1038/40418. [DOI] [PubMed] [Google Scholar]
  15. Lappalainen P., Fedorov E. V., Fedorov A. A., Almo S. C., Drubin D. G. Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J. 1997 Sep 15;16(18):5520–5530. doi: 10.1093/emboj/16.18.5520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leonard S. A., Gittis A. G., Petrella E. C., Pollard T. D., Lattman E. E. Crystal structure of the actin-binding protein actophorin from Acanthamoeba. Nat Struct Biol. 1997 May;4(5):369–373. doi: 10.1038/nsb0597-369. [DOI] [PubMed] [Google Scholar]
  17. Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
  18. McGough A., Chiu W. ADF/cofilin weakens lateral contacts in the actin filament. J Mol Biol. 1999 Aug 20;291(3):513–519. doi: 10.1006/jmbi.1999.2968. [DOI] [PubMed] [Google Scholar]
  19. McGough A., Pope B., Chiu W., Weeds A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol. 1997 Aug 25;138(4):771–781. doi: 10.1083/jcb.138.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McKim K. S., Matheson C., Marra M. A., Wakarchuk M. F., Baillie D. L. The Caenorhabditis elegans unc-60 gene encodes proteins homologous to a family of actin-binding proteins. Mol Gen Genet. 1994 Feb;242(3):346–357. doi: 10.1007/BF00280425. [DOI] [PubMed] [Google Scholar]
  21. Moon A. L., Janmey P. A., Louie K. A., Drubin D. G. Cofilin is an essential component of the yeast cortical cytoskeleton. J Cell Biol. 1993 Jan;120(2):421–435. doi: 10.1083/jcb.120.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morgan T. E., Lockerbie R. O., Minamide L. S., Browning M. D., Bamburg J. R. Isolation and characterization of a regulated form of actin depolymerizing factor. J Cell Biol. 1993 Aug;122(3):623–633. doi: 10.1083/jcb.122.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moriyama K., Iida K., Yahara I. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells. 1996 Jan;1(1):73–86. doi: 10.1046/j.1365-2443.1996.05005.x. [DOI] [PubMed] [Google Scholar]
  24. Moriyama K., Yahara I. Two activities of cofilin, severing and accelerating directional depolymerization of actin filaments, are affected differentially by mutations around the actin-binding helix. EMBO J. 1999 Dec 1;18(23):6752–6761. doi: 10.1093/emboj/18.23.6752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moriyama Kenji, Yahara Ichiro. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci. 2002 Apr 15;115(Pt 8):1591–1601. doi: 10.1242/jcs.115.8.1591. [DOI] [PubMed] [Google Scholar]
  26. Nishida E., Iida K., Yonezawa N., Koyasu S., Yahara I., Sakai H. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5262–5266. doi: 10.1073/pnas.84.15.5262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nishida E., Maekawa S., Sakai H. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry. 1984 Oct 23;23(22):5307–5313. doi: 10.1021/bi00317a032. [DOI] [PubMed] [Google Scholar]
  28. Ono S., McGough A., Pope B. J., Tolbert V. T., Bui A., Pohl J., Benian G. M., Gernert K. M., Weeds A. G. The C-terminal tail of UNC-60B (actin depolymerizing factor/cofilin) is critical for maintaining its stable association with F-actin and is implicated in the second actin-binding site. J Biol Chem. 2000 Oct 24;276(8):5952–5958. doi: 10.1074/jbc.M007563200. [DOI] [PubMed] [Google Scholar]
  29. Pope B. J., Gonsior S. M., Yeoh S., McGough A., Weeds A. G. Uncoupling actin filament fragmentation by cofilin from increased subunit turnover. J Mol Biol. 2000 May 12;298(4):649–661. doi: 10.1006/jmbi.2000.3688. [DOI] [PubMed] [Google Scholar]
  30. Renoult C., Ternent D., Maciver S. K., Fattoum A., Astier C., Benyamin Y., Roustan C. The identification of a second cofilin binding site on actin suggests a novel, intercalated arrangement of F-actin binding. J Biol Chem. 1999 Oct 8;274(41):28893–28899. doi: 10.1074/jbc.274.41.28893. [DOI] [PubMed] [Google Scholar]
  31. Rosenblatt J., Agnew B. J., Abe H., Bamburg J. R., Mitchison T. J. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J Cell Biol. 1997 Mar 24;136(6):1323–1332. doi: 10.1083/jcb.136.6.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sutoh K., Mabuchi I. End-label fingerprintings show that an N-terminal segment of depactin participates in interaction with actin. Biochemistry. 1989 Jan 10;28(1):102–106. doi: 10.1021/bi00427a015. [DOI] [PubMed] [Google Scholar]
  33. Wang Y. L., Taylor D. L. Exchange of 1,N6-etheno-ATP with actin-bound nucleotides as a tool for studying the steady-state exchange of subunits in F-actin solutions. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5503–5507. doi: 10.1073/pnas.78.9.5503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wriggers W., Tang J. X., Azuma T., Marks P. W., Janmey P. A. Cofilin and gelsolin segment-1: molecular dynamics simulation and biochemical analysis predict a similar actin binding mode. J Mol Biol. 1998 Oct 9;282(5):921–932. doi: 10.1006/jmbi.1998.2048. [DOI] [PubMed] [Google Scholar]
  35. Yonezawa N., Nishida E., Iida K., Kumagai H., Yahara I., Sakai H. Inhibition of actin polymerization by a synthetic dodecapeptide patterned on the sequence around the actin-binding site of cofilin. J Biol Chem. 1991 Jun 5;266(16):10485–10489. [PubMed] [Google Scholar]
  36. Yonezawa N., Nishida E., Iida K., Yahara I., Sakai H. Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J Biol Chem. 1990 May 25;265(15):8382–8386. [PubMed] [Google Scholar]
  37. Yonezawa N., Nishida E., Sakai H. pH control of actin polymerization by cofilin. J Biol Chem. 1985 Nov 25;260(27):14410–14412. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES