Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 15;365(Pt 2):441–450. doi: 10.1042/BJ20020107

Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis.

Sudagar S Gurcha 1, Alain R Baulard 1, Laurent Kremer 1, Camille Locht 1, D Branch Moody 1, Walter Muhlecker 1, Catherine E Costello 1, Dean C Crick 1, Patrick J Brennan 1, Gurdyal S Besra 1
PMCID: PMC1222681  PMID: 11931640

Abstract

Dolichol monophosphomannose (DPM) is an ever-present donor of mannose (Man) in various eukaryotic glycosylation processes. Intriguingly, the related polyprenol monophosphomannose (PPM) is involved in the biosynthesis of lipomannan and lipoarabinomanan, key bacterial factors termed modulins that are found in mycobacteria. Based on similarities to known DPM synthases, we have identified and characterized the PPM synthase of Mycobacterium tuberculosis, now termed Mt-Ppm1. In the present study, we demonstrate that Mt-Ppm1 possesses an unusual two-domain architecture, by which the second domain is sufficient for PPM synthesis. However, when overexpressed separately in mycobacteria, domain 1 of Mt-Ppm1 appears to increase the synthesis of PPM. Interestingly, other mycobacteria such as M. smegmatis, M. avium and M. leprae produce two distinct proteins, which are similar to the two domains found in Mt-Ppm1. Using an in vitro assay, we also demonstrate that Mt-Ppm1 transfers Man from GDP-Man to a structurally diverse range of lipid monophosphate acceptors. The identification of the PPM synthase as a key enzyme in lipoarabinomannan biosynthesis now provides an attractive candidate for gene disruption to generate mutants for subsequent immunological studies. PPM synthase can also be exploited as a target for specific inhibitors of M. tuberculosis.

Full Text

The Full Text of this article is available as a PDF (499.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony L. S., Chatterjee D., Brennan P. J., Nano F. E. Lipoarabinomannan from Mycobacterium tuberculosis modulates the generation of reactive nitrogen intermediates by gamma interferon-activated macrophages. FEMS Immunol Med Microbiol. 1994 May;8(4):299–305. doi: 10.1111/j.1574-695X.1994.tb00456.x. [DOI] [PubMed] [Google Scholar]
  2. Apostolou I., Takahama Y., Belmant C., Kawano T., Huerre M., Marchal G., Cui J., Taniguchi M., Nakauchi H., Fournié J. J. Murine natural killer T(NKT) cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5141–5146. doi: 10.1073/pnas.96.9.5141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banerjee D. K., Kousvelari E. E., Baum B. J. cAMP-mediated protein phosphorylation of microsomal membranes increases mannosylphosphodolichol synthase activity. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6389–6393. doi: 10.1073/pnas.84.18.6389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baulard A., Jourdan C., Mercenier A., Locht C. Rapid mycobacterial plasmid analysis by electroduction between Mycobacterium spp. and Escherichia coli. Nucleic Acids Res. 1992 Aug 11;20(15):4105–4105. doi: 10.1093/nar/20.15.4105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernardo J., Billingslea A. M., Blumenthal R. L., Seetoo K. F., Simons E. R., Fenton M. J. Differential responses of human mononuclear phagocytes to mycobacterial lipoarabinomannans: role of CD14 and the mannose receptor. Infect Immun. 1998 Jan;66(1):28–35. doi: 10.1128/iai.66.1.28-35.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Besra G. S., Morehouse C. B., Rittner C. M., Waechter C. J., Brennan P. J. Biosynthesis of mycobacterial lipoarabinomannan. J Biol Chem. 1997 Jul 18;272(29):18460–18466. doi: 10.1074/jbc.272.29.18460. [DOI] [PubMed] [Google Scholar]
  7. Besra G. S., Sievert T., Lee R. E., Slayden R. A., Brennan P. J., Takayama K. Identification of the apparent carrier in mycolic acid synthesis. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12735–12739. doi: 10.1073/pnas.91.26.12735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brennan P., Ballou C. E. Biosynthesis of mannophosphoinositides by Mycobacterium phlei. The family of dimannophosphoinositides. J Biol Chem. 1967 Jul 10;242(13):3046–3056. [PubMed] [Google Scholar]
  9. Chatterjee D., Roberts A. D., Lowell K., Brennan P. J., Orme I. M. Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect Immun. 1992 Mar;60(3):1249–1253. doi: 10.1128/iai.60.3.1249-1253.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  11. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C., Harris D. Massive gene decay in the leprosy bacillus. Nature. 2001 Feb 22;409(6823):1007–1011. doi: 10.1038/35059006. [DOI] [PubMed] [Google Scholar]
  12. Colussi P. A., Taron C. H., Mack J. C., Orlean P. Human and Saccharomyces cerevisiae dolichol phosphate mannose synthases represent two classes of the enzyme, but both function in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7873–7878. doi: 10.1073/pnas.94.15.7873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25;16(22):10881–10890. doi: 10.1093/nar/16.22.10881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilleron M., Ronet C., Mempel M., Monsarrat B., Gachelin G., Puzo G. Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guérin and ability to induce granuloma and recruit natural killer T cells. J Biol Chem. 2001 Jul 5;276(37):34896–34904. doi: 10.1074/jbc.M103908200. [DOI] [PubMed] [Google Scholar]
  15. Hunter S. W., Brennan P. J. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem. 1990 Jun 5;265(16):9272–9279. [PubMed] [Google Scholar]
  16. Khoo K. H., Dell A., Morris H. R., Brennan P. J., Chatterjee D. Structural definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis: definition of a common anchor for lipomannan and lipoarabinomannan. Glycobiology. 1995 Feb;5(1):117–127. doi: 10.1093/glycob/5.1.117. [DOI] [PubMed] [Google Scholar]
  17. Kruszewska J. S., Saloheimo M., Migdalski A., Orlean P., Penttilä M., Palamarczyk G. Dolichol phosphate mannose synthase from the filamentous fungus Trichoderma reesei belongs to the human and Schizosaccharomyces pombe class of the enzyme. Glycobiology. 2000 Oct;10(10):983–991. doi: 10.1093/glycob/10.10.983. [DOI] [PubMed] [Google Scholar]
  18. Lugosi L., Jacobs W. R., Jr, Bloom B. R. Genetic transformation of BCG. Tubercle. 1989 Sep;70(3):159–170. doi: 10.1016/0041-3879(89)90046-9. [DOI] [PubMed] [Google Scholar]
  19. Nigou J., Gilleron M., Cahuzac B., Bounéry J. D., Herold M., Thurnher M., Puzo G. The phosphatidyl-myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis bacillus Calmette Guérin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J Biol Chem. 1997 Sep 12;272(37):23094–23103. doi: 10.1074/jbc.272.37.23094. [DOI] [PubMed] [Google Scholar]
  20. Orlean P., Albright C., Robbins P. W. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem. 1988 Nov 25;263(33):17499–17507. [PubMed] [Google Scholar]
  21. Roach T. I., Barton C. H., Chatterjee D., Blackwell J. M. Macrophage activation: lipoarabinomannan from avirulent and virulent strains of Mycobacterium tuberculosis differentially induces the early genes c-fos, KC, JE, and tumor necrosis factor-alpha. J Immunol. 1993 Mar 1;150(5):1886–1896. [PubMed] [Google Scholar]
  22. Schaeffer M. L., Khoo K. H., Besra G. S., Chatterjee D., Brennan P. J., Belisle J. T., Inamine J. M. The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J Biol Chem. 1999 Oct 29;274(44):31625–31631. doi: 10.1074/jbc.274.44.31625. [DOI] [PubMed] [Google Scholar]
  23. Schlesinger L. S., Hull S. R., Kaufman T. M. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol. 1994 Apr 15;152(8):4070–4079. [PubMed] [Google Scholar]
  24. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]
  25. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H., Hatfull G. F. New use of BCG for recombinant vaccines. Nature. 1991 Jun 6;351(6326):456–460. doi: 10.1038/351456a0. [DOI] [PubMed] [Google Scholar]
  26. Takayama K., Schnoes H. K., Semmler E. J. Characterization of the alkali-stable mannophospholipids of Mycobacterium smegmatis. Biochim Biophys Acta. 1973 Aug 23;316(2):212–221. doi: 10.1016/0005-2760(73)90011-8. [DOI] [PubMed] [Google Scholar]
  27. Venisse A., Berjeaud J. M., Chaurand P., Gilleron M., Puzo G. Structural features of lipoarabinomannan from Mycobacterium bovis BCG. Determination of molecular mass by laser desorption mass spectrometry. J Biol Chem. 1993 Jun 15;268(17):12401–12411. [PubMed] [Google Scholar]
  28. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  29. Wolucka B. A., de Hoffmann E. Isolation and characterization of the major form of polyprenyl-phospho-mannose from Mycobacterium smegmatis. Glycobiology. 1998 Oct;8(10):955–962. doi: 10.1093/glycob/8.10.955. [DOI] [PubMed] [Google Scholar]
  30. Yokoyama K., Ballou C. E. Synthesis of alpha 1----6-mannooligosaccharides in Mycobacterium smegmatis. Function of beta-mannosylphosphoryldecaprenol as the mannosyl donor. J Biol Chem. 1989 Dec 25;264(36):21621–21628. [PubMed] [Google Scholar]
  31. Yu S., Fiss E., Jacobs W. R., Jr Analysis of the exochelin locus in Mycobacterium smegmatis: biosynthesis genes have homology with genes of the peptide synthetase family. J Bacteriol. 1998 Sep;180(17):4676–4685. doi: 10.1128/jb.180.17.4676-4685.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES