Abstract
Organic hydroperoxides are of great utility in probing the reaction mechanism and the toxicological consequences of lipid peroxidation. In the present study, ESR spin-trapping was employed to investigate the peroxidation of mitochondrial cytochrome c oxidase (CcO) with t-butyl hydroperoxide (t-BuOOH) and cumene hydroperoxide (CumOOH). The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to detect the radical species formed from the reaction of CcO with t-BuOOH. The presence of t-BuOOH-derived alkoxyl radical (t-BuO*) as the primary radical indicates reductive scission of the O-O bond by CcO. The ESR signal of DMPO/*Ot-Bu can be partially abolished by cyanide, implying that the reductive cleavage involved the haem a(3)Cu(B) binuclear site of CcO. A nitroso spin trap, 2-methyl-2-nitrosopropane (MNP), was used to detect and identify radical species from the reaction of CcO with CumOOH. In addition to the t-BuOOH-derived methyl, hydroxylmethyl and tertiary carbon-centred radicals, a protein-derived radical was detected. The intensity of the ESR signal from the protein radical increased with the CumOOH concentration at low CumOOH/CcO ratios, with maximal intensity at a ratio of 100 mol of CumOOH/mol of CcO. The immobilized protein radical adduct of MNP was stable and persistent after dialysis; it was also resistant to proteolytic digestion, suggesting that it was formed in the transmembrane region, a region that is not accessible to proteases. Its signal was greatly enhanced when CcO cysteine residues were chemically modified by N-ethylmaleimide, when the tryptophan residues in CcO were oxidized by N-bromosuccimide, and when tyrosine residues on the surface of CcO were iodinated, showing that a radical equilibrium was established among the cysteine, tryptophan and tyrosine residues of the protein-centred radical. Pre-treatment of CcO with cyanide prevented detectable MNP adduct formation, confirming that the haem a(3)-Cu(B) binuclear centre was the initial reaction site. When the CcO was pre-treated with 10 mM (100 equivalents) of CumOOH, the enzyme activity decreased by more than 20%. This inhibition was persistent after dialysis, suggesting that the detected protein-centred radical was, in part, involved in the irreversible inactivation by CumOOH. Visible spectroscopic analysis revealed that the haem a of CcO was not affected during the reaction. However, the addition of pyridine to the reaction mixture under alkaline conditions resulted in the destruction of the haem centre of CcO, suggesting that its protein matrix rather than its haem a is the target of oxidative damage by the organic hydroperoxide.
Full Text
The Full Text of this article is available as a PDF (204.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barr D. P., Gunther M. R., Deterding L. J., Tomer K. B., Mason R. P. ESR spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide. J Biol Chem. 1996 Jun 28;271(26):15498–15503. doi: 10.1074/jbc.271.26.15498. [DOI] [PubMed] [Google Scholar]
- Barr D. P., Mason R. P. Mechanism of radical production from the reaction of cytochrome c with organic hydroperoxides. An ESR spin trapping investigation. J Biol Chem. 1995 May 26;270(21):12709–12716. doi: 10.1074/jbc.270.21.12709. [DOI] [PubMed] [Google Scholar]
- Berry E. A., Trumpower B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem. 1987 Feb 15;161(1):1–15. doi: 10.1016/0003-2697(87)90643-9. [DOI] [PubMed] [Google Scholar]
- Bonilla E., Tanji K., Hirano M., Vu T. H., DiMauro S., Schon E. A. Mitochondrial involvement in Alzheimer's disease. Biochim Biophys Acta. 1999 Feb 9;1410(2):171–182. doi: 10.1016/s0005-2728(98)00165-0. [DOI] [PubMed] [Google Scholar]
- Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cadenas E., Boveris A., Ragan C. I., Stoppani A. O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977 Apr 30;180(2):248–257. doi: 10.1016/0003-9861(77)90035-2. [DOI] [PubMed] [Google Scholar]
- Chamulitrat W., Takahashi N., Mason R. P. Peroxyl, alkoxyl, and carbon-centered radical formation from organic hydroperoxides by chloroperoxidase. J Biol Chem. 1989 May 15;264(14):7889–7899. [PubMed] [Google Scholar]
- Chen Y. R., Deterding L. J., Tomer K. B., Mason R. P. Nature of the inhibition of horseradish peroxidase and mitochondrial cytochrome c oxidase by cyanyl radical. Biochemistry. 2000 Apr 18;39(15):4415–4422. doi: 10.1021/bi992652+. [DOI] [PubMed] [Google Scholar]
- Chen Y. R., Gunther M. R., Mason R. P. An electron spin resonance spin-trapping investigation of the free radicals formed by the reaction of mitochondrial cytochrome c oxidase with H2O2. J Biol Chem. 1999 Feb 5;274(6):3308–3314. doi: 10.1074/jbc.274.6.3308. [DOI] [PubMed] [Google Scholar]
- Chen Y. R., Sturgeon B. E., Gunther M. R., Mason R. P. Electron spin resonance investigation of the cyanyl and azidyl radical formation by cytochrome c oxidase. J Biol Chem. 1999 Aug 27;274(35):24611–24616. doi: 10.1074/jbc.274.35.24611. [DOI] [PubMed] [Google Scholar]
- Cortopassi G. A., Wong A. Mitochondria in organismal aging and degeneration. Biochim Biophys Acta. 1999 Feb 9;1410(2):183–193. doi: 10.1016/s0005-2728(98)00166-2. [DOI] [PubMed] [Google Scholar]
- Davies M. J. Detection of myoglobin-derived radicals on reaction of metmyoglobin with hydrogen peroxide and other peroxidic compounds. Free Radic Res Commun. 1990;10(6):361–370. doi: 10.3109/10715769009149905. [DOI] [PubMed] [Google Scholar]
- Davies M. J., Gilbert B. C., Haywood R. M. Radical-induced damage to bovine serum albumin: role of the cysteine residue. Free Radic Res Commun. 1993;18(6):353–367. doi: 10.3109/10715769309147502. [DOI] [PubMed] [Google Scholar]
- Dikalov S. I., Mason R. P. Reassignment of organic peroxyl radical adducts. Free Radic Biol Med. 1999 Oct;27(7-8):864–872. doi: 10.1016/s0891-5849(99)00134-3. [DOI] [PubMed] [Google Scholar]
- Duling D. R. Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B. 1994 Jun;104(2):105–110. doi: 10.1006/jmrb.1994.1062. [DOI] [PubMed] [Google Scholar]
- Gunther M. R., Tschirret-Guth R. A., Witkowska H. E., Fann Y. C., Barr D. P., Ortiz De Montellano P. R., Mason R. P. Site-specific spin trapping of tyrosine radicals in the oxidation of metmyoglobin by hydrogen peroxide. Biochem J. 1998 Mar 15;330(Pt 3):1293–1299. doi: 10.1042/bj3301293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogg N., Kalyanaraman B. Nitric oxide and lipid peroxidation. Biochim Biophys Acta. 1999 May 5;1411(2-3):378–384. doi: 10.1016/s0005-2728(99)00027-4. [DOI] [PubMed] [Google Scholar]
- Konstantinov AA, Vygodina T, Capitanio N, Papa S. Ferrocyanide-peroxidase activity of cytochrome c oxidase. Biochim Biophys Acta. 1998 Jan 27;1363(1):11–23. doi: 10.1016/s0005-2728(97)00087-x. [DOI] [PubMed] [Google Scholar]
- Ksenzenko MYu, Vygodina T. V., Berka V., Ruuge E. K., Konstantinov A. A. Cytochrome oxidase-catalyzed superoxide generation from hydrogen peroxide. FEBS Lett. 1992 Feb 3;297(1-2):63–66. doi: 10.1016/0014-5793(92)80328-e. [DOI] [PubMed] [Google Scholar]
- MacMillan F., Kannt A., Behr J., Prisner T., Michel H. Direct evidence for a tyrosine radical in the reaction of cytochrome c oxidase with hydrogen peroxide. Biochemistry. 1999 Jul 20;38(29):9179–9184. doi: 10.1021/bi9911987. [DOI] [PubMed] [Google Scholar]
- Markwell M. A. A new solid-state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum. Anal Biochem. 1982 Sep 15;125(2):427–432. doi: 10.1016/0003-2697(82)90025-2. [DOI] [PubMed] [Google Scholar]
- Matysik J., Hildebrandt P., Ludwig B. Induction of photochemical auto-reduction of cytochrome-c oxidase by an organic peroxide. Biochim Biophys Acta. 2000 Jul 20;1459(1):125–130. doi: 10.1016/s0005-2728(00)00121-3. [DOI] [PubMed] [Google Scholar]
- Moreno S. N., Stolze K., Janzen E. G., Mason R. P. Oxidation of cyanide to the cyanyl radical by peroxidase/H2O2 systems as determined by spin trapping. Arch Biochem Biophys. 1988 Sep;265(2):267–271. doi: 10.1016/0003-9861(88)90127-0. [DOI] [PubMed] [Google Scholar]
- Nohl H., Jordan W. The mitochondrial site of superoxide formation. Biochem Biophys Res Commun. 1986 Jul 31;138(2):533–539. doi: 10.1016/s0006-291x(86)80529-0. [DOI] [PubMed] [Google Scholar]
- Proshlyakov D. A., Pressler M. A., DeMaso C., Leykam J. F., DeWitt D. L., Babcock G. T. Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Science. 2000 Nov 24;290(5496):1588–1591. doi: 10.1126/science.290.5496.1588. [DOI] [PubMed] [Google Scholar]
- Reinheckel T., Wiswedel I., Noack H., Augustin W. Electrophoretic evidence for the impairment of complexes of the respiratory chain during iron/ascorbate induced peroxidation in isolated rat liver mitochondria. Biochim Biophys Acta. 1995 Oct 4;1239(1):45–50. doi: 10.1016/0005-2736(95)00142-p. [DOI] [PubMed] [Google Scholar]
- Rota C., Barr D. P., Martin M. V., Guengerich F. P., Tomasi A., Mason R. P. Detection of free radicals produced from the reaction of cytochrome P-450 with linoleic acid hydroperoxide. Biochem J. 1997 Dec 1;328(Pt 2):565–571. doi: 10.1042/bj3280565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schapira A. H. Mitochondrial disorders. Biochim Biophys Acta. 1999 Feb 9;1410(2):99–102. doi: 10.1016/s0005-2728(98)00160-1. [DOI] [PubMed] [Google Scholar]
- Schapira A. H. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim Biophys Acta. 1999 Feb 9;1410(2):159–170. doi: 10.1016/s0005-2728(98)00164-9. [DOI] [PubMed] [Google Scholar]
- Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. doi: 10.1126/science.7652554. [DOI] [PubMed] [Google Scholar]
- Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
- Turrens J. F., Alexandre A., Lehninger A. L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985 Mar;237(2):408–414. doi: 10.1016/0003-9861(85)90293-0. [DOI] [PubMed] [Google Scholar]
- Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980 Nov 1;191(2):421–427. doi: 10.1042/bj1910421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vygodina T. V., Konstantinov A. A. H2O2-induced conversion of cytochrome c oxidase peroxy complex to oxoferryl state. Ann N Y Acad Sci. 1988;550:124–138. doi: 10.1111/j.1749-6632.1988.tb35329.x. [DOI] [PubMed] [Google Scholar]
- Wallace D. C. Mitochondrial diseases in man and mouse. Science. 1999 Mar 5;283(5407):1482–1488. doi: 10.1126/science.283.5407.1482. [DOI] [PubMed] [Google Scholar]
- Wrigglesworth J. M., Ioannidis N., Nicholls P. Spectrophotometric characterization of intermediate redox states of cytochrome oxidase. Ann N Y Acad Sci. 1988;550:150–160. doi: 10.1111/j.1749-6632.1988.tb35331.x. [DOI] [PubMed] [Google Scholar]
- Yu C. A., Chiang Y. L., Yu L., King T. E. Photoreduction of cytochrome c1. J Biol Chem. 1975 Aug 25;250(16):6218–6221. [PubMed] [Google Scholar]
- Zaslavsky D., Gennis R. B. Substitution of lysine-362 in a putative proton-conducting channel in the cytochrome c oxidase from Rhodobacter sphaeroides blocks turnover with O2 but not with H2O2. Biochemistry. 1998 Mar 3;37(9):3062–3067. doi: 10.1021/bi971877m. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K. J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem. 1990 Sep 25;265(27):16330–16336. [PubMed] [Google Scholar]
