Abstract
The pre-steady-state kinetics of inter-domain electron transfer in the extracellular flavocytochrome cellobiose dehydrogenase from Phanerochaete chrysosporium was studied using various values of pH and substrate concentration. Monitoring at the isosbestic point of each prosthetic group indicated that the reductive half-reactions of flavin and haem were biphasic and monophasic respectively. When the observed rates of the flavin and haem reactions were plotted against substrate concentration, the behaviour of the second phase of the flavin reduction was almost identical with that of haem reduction at all substrate concentrations and pH values tested, suggesting that the formation of flavin semiquinone and haem reduction involve the same electron transfer reaction. Although flavin reduction by cellobiose was observed in the range of pH 3.0-7.0, the velocity of the next electron transfer step decreased with increase of pH and was almost zero above pH 6.0. The second phase of flavin reduction and the haem reduction were inhibited similarly by high concentrations of the substrate, whereas the first phase of flavin reduction showed a hyperbolic relation to the cellobiose concentration. Increase in pH enhanced the substrate inhibition of haem reduction but not the initial flavin reduction. Moreover, the dissociation constant K(d) of flavin reduction and the substrate inhibition constant K(i) of haem reduction decreased similarly with an increase of pH. From these results, it is evident that binding of cellobiose to the active site inhibits electron transfer from flavin to haem.
Full Text
The Full Text of this article is available as a PDF (132.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayers A. R., Ayers S. B., Eriksson K. E. Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem. 1978 Sep 15;90(1):171–181. doi: 10.1111/j.1432-1033.1978.tb12588.x. [DOI] [PubMed] [Google Scholar]
- Bao W., Usha S. N., Renganathan V. Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys. 1993 Feb 1;300(2):705–713. doi: 10.1006/abbi.1993.1098. [DOI] [PubMed] [Google Scholar]
- Cameron M. D., Aust S. D. Cellobiose dehydrogenase-an extracellular fungal flavocytochrome. Enzyme Microb Technol. 2001 Feb 1;28(2-3):129–138. doi: 10.1016/s0141-0229(00)00307-0. [DOI] [PubMed] [Google Scholar]
- Cameron M. D., Aust S. D. Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochemistry. 2000 Nov 7;39(44):13595–13601. doi: 10.1021/bi000862c. [DOI] [PubMed] [Google Scholar]
- Chapman S. K., Welsh F., Moysey R., Mowat C., Doherty M. K., Turner K. L., Munro A. W., Reid G. A. Flavocytochromes: transceivers and relays in biological electron transfer. Biochem Soc Trans. 1999 Feb;27(2):185–189. doi: 10.1042/bst0270185. [DOI] [PubMed] [Google Scholar]
- Cunane L. M., Chen Z. W., Durley R. C., Barton J. D., Mathews F. S. Flavocytochromes: structures and implications for electron transfer. Biochem Soc Trans. 1999 Feb;27(2):179–184. doi: 10.1042/bst0270179. [DOI] [PubMed] [Google Scholar]
- Henriksson G., Johansson G., Pettersson G. A critical review of cellobiose dehydrogenases. J Biotechnol. 2000 Mar 10;78(2):93–113. doi: 10.1016/s0168-1656(00)00206-6. [DOI] [PubMed] [Google Scholar]
- Henriksson G., Pettersson G., Johansson G., Ruiz A., Uzcategui E. Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem. 1991 Feb 26;196(1):101–106. doi: 10.1111/j.1432-1033.1991.tb15791.x. [DOI] [PubMed] [Google Scholar]
- Igarashi K., Samejima M., Eriksson K. E. Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition. Eur J Biochem. 1998 Apr 1;253(1):101–106. doi: 10.1046/j.1432-1327.1998.2530101.x. [DOI] [PubMed] [Google Scholar]
- Igarashi K., Samejima M., Saburi Y., Habu N., Eriksson K. E. Localization of cellobiose dehydrogenase in cellulose-grown cultures of Phanerochaete chrysosporium. Fungal Genet Biol. 1997 Apr;21(2):214–222. doi: 10.1006/fgbi.1996.0954. [DOI] [PubMed] [Google Scholar]
- Igarashi K., Verhagen M. F., Samejima M., Schülein M., Eriksson K. E., Nishino T. Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor. J Biol Chem. 1999 Feb 5;274(6):3338–3344. doi: 10.1074/jbc.274.6.3338. [DOI] [PubMed] [Google Scholar]
- Jones G. D., Wilson M. T. Rapid kinetic studies of the reduction of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum by cellobiose. Biochem J. 1988 Dec 15;256(3):713–718. doi: 10.1042/bj2560713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kremer S. M., Wood P. M. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem. 1992 Apr 1;205(1):133–138. doi: 10.1111/j.1432-1033.1992.tb16760.x. [DOI] [PubMed] [Google Scholar]
- Li B., Nagalla S. R., Renganathan V. Cellobiose dehydrogenase from Phanerochaete chrysosporium is encoded by two allelic variants. Appl Environ Microbiol. 1997 Feb;63(2):796–799. doi: 10.1128/aem.63.2.796-799.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li B., Nagalla S. R., Renganathan V. Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium. Appl Environ Microbiol. 1996 Apr;62(4):1329–1335. doi: 10.1128/aem.62.4.1329-1335.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massey V., Palmer G. On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones. Biochemistry. 1966 Oct;5(10):3181–3189. doi: 10.1021/bi00874a016. [DOI] [PubMed] [Google Scholar]
- Morpeth F. F. Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum. Biochem J. 1985 Jun 15;228(3):557–564. doi: 10.1042/bj2280557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raices M., Paifer E., Cremata J., Montesino R., Ståhlberg J., Divne C., Szabó I. J., Henriksson G., Johansson G., Pettersson G. Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungus Phanerochaete chrysosporium. FEBS Lett. 1995 Aug 7;369(2-3):233–238. doi: 10.1016/0014-5793(95)00758-2. [DOI] [PubMed] [Google Scholar]
- Rogers M. S., Jones G. D., Antonini G., Wilson M. T., Brunori M. Electron transfer from Phanerochaete chrysosporium cellobiose oxidase to equine cytochrome c and Pseudomonas aeruginosa cytochrome c-551. Biochem J. 1994 Mar 1;298(Pt 2):329–334. doi: 10.1042/bj2980329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouvière N., Mayer M., Tegoni M., Capeillère-Blandin C., Lederer F. Molecular interpretation of inhibition by excess substrate in flavocytochrome b2: a study with wild-type and Y143F mutant enzymes. Biochemistry. 1997 Jun 10;36(23):7126–7135. doi: 10.1021/bi963035d. [DOI] [PubMed] [Google Scholar]
- Samejima M., Eriksson K. E. A comparison of the catalytic properties of cellobiose:quinone oxidoreductase and cellobiose oxidase from Phanerochaete chrysosporium. Eur J Biochem. 1992 Jul 1;207(1):103–107. doi: 10.1111/j.1432-1033.1992.tb17026.x. [DOI] [PubMed] [Google Scholar]
- Samejima M., Phillips R. S., Eriksson K. E. Cellobiose oxidase from Phanerochaete chrysosporium. Stopped-flow spectrophotometric analysis of pH-dependent reduction. FEBS Lett. 1992 Jul 20;306(2-3):165–168. doi: 10.1016/0014-5793(92)80991-o. [DOI] [PubMed] [Google Scholar]
- Strickland S., Palmer G., Massey V. Determination of dissociation constants and specific rate constants of enzyme-substrate (or protein-ligand) interactions from rapid reaction kinetic data. J Biol Chem. 1975 Jun 10;250(11):4048–4052. [PubMed] [Google Scholar]
- Tegoni M., Silvestrini M. C., Guigliarelli B., Asso M., Brunori M., Bertrand P. Temperature-jump and potentiometric studies on recombinant wild type and Y143F and Y254F mutants of Saccharomyces cerevisiae flavocytochrome b2: role of the driving force in intramolecular electron transfer kinetics. Biochemistry. 1998 Sep 15;37(37):12761–12771. doi: 10.1021/bi980192z. [DOI] [PubMed] [Google Scholar]
- Wilson M. T., Hogg N., Jones G. D. Reactions of reduced cellobiose oxidase with oxygen. Is cellobiose oxidase primarily an oxidase? Biochem J. 1990 Aug 15;270(1):265–267. doi: 10.1042/bj2700265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida M., Ohira T., Igarashi K., Nagasawa H., Aida K., Hallberg B. M., Divne C., Nishino T., Samejima M. Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastoris. Biosci Biotechnol Biochem. 2001 Sep;65(9):2050–2057. doi: 10.1271/bbb.65.2050. [DOI] [PubMed] [Google Scholar]