Abstract
ADP-ribosylation factors (ARFs) are a family of small GTPases that are involved in various aspects of membrane trafficking events. These include ARF1-ARF6, which are divided into three classes on the basis of similarity in the primary structure: Class I, ARF1-ARF3; Class II, ARF4 and ARF5; and Class III, ARF6. Previous studies identified a novel family of potential ARF effectors, termed GGA1-GGA3, which interact specifically with GTP-bound ARF1 and ARF3 and are localized to the trans-Golgi network (TGN) or its related compartment(s) (GGA is an abbreviation for Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding protein). In the present study we have shown that ARF proteins belonging to the three classes, ARF1, ARF5 and ARF6, can interact with all GGA proteins in a yeast two-hybrid assay, in vitro and in vivo. Segmentation of GGA proteins and isolation of GGA mutants defective in ARF binding have revealed that a limited region within the GGA homology domain, which is conserved in the GGA family, is essential for ARF binding. Expression in cells of GTPase-restricted mutants of ARF1 and ARF5 blocks dissociation of GGA proteins from membranes induced by brefeldin A. However, neither of the ARF mutants recruits GGA mutants defective in ARF binding. On the basis of these observations, we conclude that at least ARF1 (Class I) and ARF5 (Class II) in their GTP-bound state cause recruitment of GGA proteins on to TGN membranes. In contrast, on the basis of similar experiments, ARF6 (Class III) may be involved in recruitment of GGA proteins to other compartments, possibly early endosomes.
Full Text
The Full Text of this article is available as a PDF (604.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Awar O., Radhakrishna H., Powell N. N., Donaldson J. G. Separation of membrane trafficking and actin remodeling functions of ARF6 with an effector domain mutant. Mol Cell Biol. 2000 Aug;20(16):5998–6007. doi: 10.1128/mcb.20.16.5998-6007.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barlowe C. COPII and selective export from the endoplasmic reticulum. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):67–76. doi: 10.1016/s0167-4889(98)00047-0. [DOI] [PubMed] [Google Scholar]
- Black M. W., Pelham H. R. A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins. J Cell Biol. 2000 Oct 30;151(3):587–600. doi: 10.1083/jcb.151.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boman A. L., Zhang C. j., Zhu X., Kahn R. A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol Biol Cell. 2000 Apr;11(4):1241–1255. doi: 10.1091/mbc.11.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cadwell R. C., Joyce G. F. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 1992 Aug;2(1):28–33. doi: 10.1101/gr.2.1.28. [DOI] [PubMed] [Google Scholar]
- Chavrier P., Goud B. The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol. 1999 Aug;11(4):466–475. doi: 10.1016/S0955-0674(99)80067-2. [DOI] [PubMed] [Google Scholar]
- Dascher C., Balch W. E. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J Biol Chem. 1994 Jan 14;269(2):1437–1448. [PubMed] [Google Scholar]
- Dell'Angelica E. C., Mullins C., Bonifacino J. S. AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem. 1999 Mar 12;274(11):7278–7285. doi: 10.1074/jbc.274.11.7278. [DOI] [PubMed] [Google Scholar]
- Donaldson J. G., Cassel D., Kahn R. A., Klausner R. D. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6408–6412. doi: 10.1073/pnas.89.14.6408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faúndez V., Horng J. T., Kelly R. B. A function for the AP3 coat complex in synaptic vesicle formation from endosomes. Cell. 1998 May 1;93(3):423–432. doi: 10.1016/s0092-8674(00)81170-8. [DOI] [PubMed] [Google Scholar]
- Futatsumori M., Kasai K., Takatsu H., Shin H. W., Nakayama K. Identification and characterization of novel isoforms of COP I subunits. J Biochem. 2000 Nov;128(5):793–801. doi: 10.1093/oxfordjournals.jbchem.a022817. [DOI] [PubMed] [Google Scholar]
- Hirst J., Bright N. A., Rous B., Robinson M. S. Characterization of a fourth adaptor-related protein complex. Mol Biol Cell. 1999 Aug;10(8):2787–2802. doi: 10.1091/mbc.10.8.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirst J., Lui W. W., Bright N. A., Totty N., Seaman M. N., Robinson M. S. A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J Cell Biol. 2000 Apr 3;149(1):67–80. doi: 10.1083/jcb.149.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirst J., Robinson M. S. Clathrin and adaptors. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):173–193. doi: 10.1016/s0167-4889(98)00056-1. [DOI] [PubMed] [Google Scholar]
- Hosaka M., Toda K., Takatsu H., Torii S., Murakami K., Nakayama K. Structure and intracellular localization of mouse ADP-ribosylation factors type 1 to type 6 (ARF1-ARF6). J Biochem. 1996 Oct;120(4):813–819. doi: 10.1093/oxfordjournals.jbchem.a021484. [DOI] [PubMed] [Google Scholar]
- Jackson C. L. Brefeldin A revealing the fundamental principles governing membrane dynamics and protein transport. Subcell Biochem. 2000;34:233–272. doi: 10.1007/0-306-46824-7_6. [DOI] [PubMed] [Google Scholar]
- Kirchhausen T. Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol. 1999;15:705–732. doi: 10.1146/annurev.cellbio.15.1.705. [DOI] [PubMed] [Google Scholar]
- Kirchhausen T. Three ways to make a vesicle. Nat Rev Mol Cell Biol. 2000 Dec;1(3):187–198. doi: 10.1038/35043117. [DOI] [PubMed] [Google Scholar]
- Klausner R. D., Donaldson J. G., Lippincott-Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 1992 Mar;116(5):1071–1080. doi: 10.1083/jcb.116.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lippincott-Schwartz J., Cole N. B., Donaldson J. G. Building a secretory apparatus: role of ARF1/COPI in Golgi biogenesis and maintenance. Histochem Cell Biol. 1998 May-Jun;109(5-6):449–462. doi: 10.1007/s004180050247. [DOI] [PubMed] [Google Scholar]
- Lohi O., Lehto V. P. VHS domain marks a group of proteins involved in endocytosis and vesicular trafficking. FEBS Lett. 1998 Dec 4;440(3):255–257. doi: 10.1016/s0014-5793(98)01401-x. [DOI] [PubMed] [Google Scholar]
- Lowe M., Kreis T. E. Regulation of membrane traffic in animal cells by COPI. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):53–66. doi: 10.1016/s0167-4889(98)00046-9. [DOI] [PubMed] [Google Scholar]
- Misra Saurav, Puertollano Rosa, Kato Yukio, Bonifacino Juan S., Hurley James H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature. 2002 Feb 21;415(6874):933–937. doi: 10.1038/415933a. [DOI] [PubMed] [Google Scholar]
- Moss J., Vaughan M. Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem. 1995 May 26;270(21):12327–12330. doi: 10.1074/jbc.270.21.12327. [DOI] [PubMed] [Google Scholar]
- Nakamura N., Rabouille C., Watson R., Nilsson T., Hui N., Slusarewicz P., Kreis T. E., Warren G. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol. 1995 Dec;131(6 Pt 2):1715–1726. doi: 10.1083/jcb.131.6.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen M. S., Madsen P., Christensen E. I., Nykjaer A., Gliemann J., Kasper D., Pohlmann R., Petersen C. M. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 2001 May 1;20(9):2180–2190. doi: 10.1093/emboj/20.9.2180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ooi C. E., Dell'Angelica E. C., Bonifacino J. S. ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J Cell Biol. 1998 Jul 27;142(2):391–402. doi: 10.1083/jcb.142.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poussu A., Lohi O., Lehto V. P. Vear, a novel Golgi-associated protein with VHS and gamma-adaptin "ear" domains. J Biol Chem. 2000 Mar 10;275(10):7176–7183. doi: 10.1074/jbc.275.10.7176. [DOI] [PubMed] [Google Scholar]
- Puertollano R., Aguilar R. C., Gorshkova I., Crouch R. J., Bonifacino J. S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science. 2001 Jun 1;292(5522):1712–1716. doi: 10.1126/science.1060750. [DOI] [PubMed] [Google Scholar]
- Puertollano R., Randazzo P. A., Presley J. F., Hartnell L. M., Bonifacino J. S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell. 2001 Apr 6;105(1):93–102. doi: 10.1016/s0092-8674(01)00299-9. [DOI] [PubMed] [Google Scholar]
- Roth M. G. Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol. 1999 May;9(5):174–179. doi: 10.1016/s0962-8924(99)01535-4. [DOI] [PubMed] [Google Scholar]
- Schekman R., Orci L. Coat proteins and vesicle budding. Science. 1996 Mar 15;271(5255):1526–1533. doi: 10.1126/science.271.5255.1526. [DOI] [PubMed] [Google Scholar]
- Schmid S. L., Damke H. Coated vesicles: a diversity of form and function. FASEB J. 1995 Nov;9(14):1445–1453. doi: 10.1096/fasebj.9.14.7589986. [DOI] [PubMed] [Google Scholar]
- Shiba Tomoo, Takatsu Hiroyuki, Nogi Terukazu, Matsugaki Naohiro, Kawasaki Masato, Igarashi Noriyuki, Suzuki Mamoru, Kato Ryuichi, Earnest Thomas, Nakayama Kazuhisa. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature. 2002 Feb 21;415(6874):937–941. doi: 10.1038/415937a. [DOI] [PubMed] [Google Scholar]
- Shiba Yoko, Takatsu Hiroyuki, Shin Hye-Won, Nakayama Kazuhisa. Gamma-adaptin interacts directly with Rabaptin-5 through its ear domain. J Biochem. 2002 Mar;131(3):327–336. doi: 10.1093/oxfordjournals.jbchem.a003107. [DOI] [PubMed] [Google Scholar]
- Shin H. W., Shinotsuka C., Torii S., Murakami K., Nakayama K. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J Biochem. 1997 Sep;122(3):525–530. doi: 10.1093/oxfordjournals.jbchem.a021784. [DOI] [PubMed] [Google Scholar]
- Shin H. W., Takatsu H., Mukai H., Munekata E., Murakami K., Nakayama K. Intermolecular and interdomain interactions of a dynamin-related GTP-binding protein, Dnm1p/Vps1p-like protein. J Biol Chem. 1999 Jan 29;274(5):2780–2785. doi: 10.1074/jbc.274.5.2780. [DOI] [PubMed] [Google Scholar]
- Stamnes M. A., Rothman J. E. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell. 1993 Jun 4;73(5):999–1005. doi: 10.1016/0092-8674(93)90277-w. [DOI] [PubMed] [Google Scholar]
- Takatsu H., Katoh Y., Shiba Y., Nakayama K. Golgi-localizing, gamma-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J Biol Chem. 2001 Jun 4;276(30):28541–28545. doi: 10.1074/jbc.C100218200. [DOI] [PubMed] [Google Scholar]
- Takatsu H., Sakurai M., Shin H. W., Murakami K., Nakayama K. Identification and characterization of novel clathrin adaptor-related proteins. J Biol Chem. 1998 Sep 18;273(38):24693–24700. doi: 10.1074/jbc.273.38.24693. [DOI] [PubMed] [Google Scholar]
- Takatsu H., Yoshino K., Nakayama K. Adaptor gamma ear homology domain conserved in gamma-adaptin and GGA proteins that interact with gamma-synergin. Biochem Biophys Res Commun. 2000 May 19;271(3):719–725. doi: 10.1006/bbrc.2000.2700. [DOI] [PubMed] [Google Scholar]
- Teal S. B., Hsu V. W., Peters P. J., Klausner R. D., Donaldson J. G. An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes. J Biol Chem. 1994 Feb 4;269(5):3135–3138. [PubMed] [Google Scholar]
- Torii S., Banno T., Watanabe T., Ikehara Y., Murakami K., Nakayama K. Cytotoxicity of brefeldin A correlates with its inhibitory effect on membrane binding of COP coat proteins. J Biol Chem. 1995 May 12;270(19):11574–11580. doi: 10.1074/jbc.270.19.11574. [DOI] [PubMed] [Google Scholar]
- Wieland F., Harter C. Mechanisms of vesicle formation: insights from the COP system. Curr Opin Cell Biol. 1999 Aug;11(4):440–446. doi: 10.1016/s0955-0674(99)80063-5. [DOI] [PubMed] [Google Scholar]
- Zhang C. J., Rosenwald A. G., Willingham M. C., Skuntz S., Clark J., Kahn R. A. Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo. J Cell Biol. 1994 Feb;124(3):289–300. doi: 10.1083/jcb.124.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhdankina O., Strand N. L., Redmond J. M., Boman A. L. Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast. 2001 Jan 15;18(1):1–18. doi: 10.1002/1097-0061(200101)18:1<1::AID-YEA644>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Zhu Y., Doray B., Poussu A., Lehto V. P., Kornfeld S. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science. 2001 Jun 1;292(5522):1716–1718. doi: 10.1126/science.1060896. [DOI] [PubMed] [Google Scholar]
- Zhu Y., Traub L. M., Kornfeld S. ADP-ribosylation factor 1 transiently activates high-affinity adaptor protein complex AP-1 binding sites on Golgi membranes. Mol Biol Cell. 1998 Jun;9(6):1323–1337. doi: 10.1091/mbc.9.6.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]