Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 15;365(Pt 2):329–336. doi: 10.1042/BJ20020481

G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

Oussama El Far 1, Heinrich Betz 1
PMCID: PMC1222699  PMID: 12006104

Abstract

G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity.

Full Text

The Full Text of this article is available as a PDF (280.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airas J. M., Betz H., El Far O. PKC phosphorylation of a conserved serine residue in the C-terminus of group III metabotropic glutamate receptors inhibits calmodulin binding. FEBS Lett. 2001 Apr 6;494(1-2):60–63. doi: 10.1016/s0014-5793(01)02311-0. [DOI] [PubMed] [Google Scholar]
  2. Barak L. S., Oakley R. H., Laporte S. A., Caron M. G. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):93–98. doi: 10.1073/pnas.011303698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barthel F., Kienlen Campard P., Demeneix B. A., Feltz P., Loeffler J. P. GABAB receptors negatively regulate transcription in cerebellar granular neurons through cyclic AMP responsive element binding protein-dependent mechanisms. Neuroscience. 1996 Jan;70(2):417–427. doi: 10.1016/0306-4522(95)00380-0. [DOI] [PubMed] [Google Scholar]
  4. Benzing T., Yaffe M. B., Arnould T., Sellin L., Schermer B., Schilling B., Schreiber R., Kunzelmann K., Leparc G. G., Kim E. 14-3-3 interacts with regulator of G protein signaling proteins and modulates their activity. J Biol Chem. 2000 Sep 8;275(36):28167–28172. doi: 10.1074/jbc.M002905200. [DOI] [PubMed] [Google Scholar]
  5. Bockaert J., Pin J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999 Apr 1;18(7):1723–1729. doi: 10.1093/emboj/18.7.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boudin H., Craig A. M. Molecular determinants for PICK1 synaptic aggregation and mGluR7a receptor coclustering: role of the PDZ, coiled-coil, and acidic domains. J Biol Chem. 2001 May 24;276(32):30270–30276. doi: 10.1074/jbc.M102991200. [DOI] [PubMed] [Google Scholar]
  7. Boudin H., Doan A., Xia J., Shigemoto R., Huganir R. L., Worley P., Craig A. M. Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron. 2000 Nov;28(2):485–497. doi: 10.1016/s0896-6273(00)00127-6. [DOI] [PubMed] [Google Scholar]
  8. Caddick S. J., Hosford D. A. The role of GABAB mechanisms in animal models of absence seizures. Mol Neurobiol. 1996 Aug;13(1):23–32. doi: 10.1007/BF02740750. [DOI] [PubMed] [Google Scholar]
  9. Calver A. R., Robbins M. J., Cosio C., Rice S. Q., Babbs A. J., Hirst W. D., Boyfield I., Wood M. D., Russell R. B., Price G. W. The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J Neurosci. 2001 Feb 15;21(4):1203–1210. doi: 10.1523/JNEUROSCI.21-04-01203.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Conn P. J., Pin J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol. 1997;37:205–237. doi: 10.1146/annurev.pharmtox.37.1.205. [DOI] [PubMed] [Google Scholar]
  11. Couve A., Kittler J. T., Uren J. M., Calver A. R., Pangalos M. N., Walsh F. S., Moss S. J. Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins. Mol Cell Neurosci. 2001 Feb;17(2):317–328. doi: 10.1006/mcne.2000.0938. [DOI] [PubMed] [Google Scholar]
  12. Couve A., Moss S. J., Pangalos M. N. GABAB receptors: a new paradigm in G protein signaling. Mol Cell Neurosci. 2000 Oct;16(4):296–312. doi: 10.1006/mcne.2000.0908. [DOI] [PubMed] [Google Scholar]
  13. De Waard M., Liu H., Walker D., Scott V. E., Gurnett C. A., Campbell K. P. Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature. 1997 Jan 30;385(6615):446–450. doi: 10.1038/385446a0. [DOI] [PubMed] [Google Scholar]
  14. Dev K. K., Nakajima Y., Kitano J., Braithwaite S. P., Henley J. M., Nakanishi S. PICK1 interacts with and regulates PKC phosphorylation of mGLUR7. J Neurosci. 2000 Oct 1;20(19):7252–7257. doi: 10.1523/JNEUROSCI.20-19-07252.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. El Far O., Airas J., Wischmeyer E., Nehring R. B., Karschin A., Betz H. Interaction of the C-terminal tail region of the metabotropic glutamate receptor 7 with the protein kinase C substrate PICK1. Eur J Neurosci. 2000 Dec;12(12):4215–4221. doi: 10.1046/j.1460-9568.2000.01309.x. [DOI] [PubMed] [Google Scholar]
  16. El Far O., Bofill-Cardona E., Airas J. M., O'Connor V., Boehm S., Freissmuth M., Nanoff C., Betz H. Mapping of calmodulin and Gbetagamma binding domains within the C-terminal region of the metabotropic glutamate receptor 7A. J Biol Chem. 2001 Jun 6;276(33):30662–30669. doi: 10.1074/jbc.M102573200. [DOI] [PubMed] [Google Scholar]
  17. Enz Ralf. The actin-binding protein Filamin-A interacts with the metabotropic glutamate receptor type 7. FEBS Lett. 2002 Mar 13;514(2-3):184–188. doi: 10.1016/s0014-5793(02)02361-x. [DOI] [PubMed] [Google Scholar]
  18. Enz Ralf. The metabotropic glutamate receptor mGluR7b binds to the catalytic gamma-subunit of protein phosphatase 1. J Neurochem. 2002 Jun;81(5):1130–1140. doi: 10.1046/j.1471-4159.2002.00922.x. [DOI] [PubMed] [Google Scholar]
  19. Filippov A. K., Couve A., Pangalos M. N., Walsh F. S., Brown D. A., Moss S. J. Heteromeric assembly of GABA(B)R1 and GABA(B)R2 receptor subunits inhibits Ca(2+) current in sympathetic neurons. J Neurosci. 2000 Apr 15;20(8):2867–2874. doi: 10.1523/JNEUROSCI.20-08-02867.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fu H., Subramanian R. R., Masters S. C. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 2000;40:617–647. doi: 10.1146/annurev.pharmtox.40.1.617. [DOI] [PubMed] [Google Scholar]
  21. Gasparini F., Bruno V., Battaglia G., Lukic S., Leonhardt T., Inderbitzin W., Laurie D., Sommer B., Varney M. A., Hess S. D. (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther. 1999 Jun;289(3):1678–1687. [PubMed] [Google Scholar]
  22. Hata Y., Nakanishi H., Takai Y. Synaptic PDZ domain-containing proteins. Neurosci Res. 1998 Sep;32(1):1–7. doi: 10.1016/s0168-0102(98)00069-8. [DOI] [PubMed] [Google Scholar]
  23. Hayashi M. K., Haga T. Palmitoylation of muscarinic acetylcholine receptor m2 subtypes: reduction in their ability to activate G proteins by mutation of a putative palmitoylation site, cysteine 457, in the carboxyl-terminal tail. Arch Biochem Biophys. 1997 Apr 15;340(2):376–382. doi: 10.1006/abbi.1997.9906. [DOI] [PubMed] [Google Scholar]
  24. Herlitze S., Hockerman G. H., Scheuer T., Catterall W. A. Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel alpha1A subunit. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1512–1516. doi: 10.1073/pnas.94.4.1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ikeda S. R. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature. 1996 Mar 21;380(6571):255–258. doi: 10.1038/380255a0. [DOI] [PubMed] [Google Scholar]
  26. Jones K. A., Borowsky B., Tamm J. A., Craig D. A., Durkin M. M., Dai M., Yao W. J., Johnson M., Gunwaldsen C., Huang L. Y. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature. 1998 Dec 17;396(6712):674–679. doi: 10.1038/25348. [DOI] [PubMed] [Google Scholar]
  27. Kang C. H., Shin W. C., Yamagata Y., Gokcen S., Ames G. F., Kim S. H. Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution. J Biol Chem. 1991 Dec 15;266(35):23893–23899. [PubMed] [Google Scholar]
  28. Karpinski B. A., Morle G. D., Huggenvik J., Uhler M. D., Leiden J. M. Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4820–4824. doi: 10.1073/pnas.89.11.4820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kaupmann K., Malitschek B., Schuler V., Heid J., Froestl W., Beck P., Mosbacher J., Bischoff S., Kulik A., Shigemoto R. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature. 1998 Dec 17;396(6712):683–687. doi: 10.1038/25360. [DOI] [PubMed] [Google Scholar]
  30. Kennedy M. E., Limbird L. E. Palmitoylation of the alpha 2A-adrenergic receptor. Analysis of the sequence requirements for and the dynamic properties of alpha 2A-adrenergic receptor palmitoylation. J Biol Chem. 1994 Dec 16;269(50):31915–31922. [PubMed] [Google Scholar]
  31. Kuner R., Köhr G., Grünewald S., Eisenhardt G., Bach A., Kornau H. C. Role of heteromer formation in GABAB receptor function. Science. 1999 Jan 1;283(5398):74–77. doi: 10.1126/science.283.5398.74. [DOI] [PubMed] [Google Scholar]
  32. Kunishima N., Shimada Y., Tsuji Y., Sato T., Yamamoto M., Kumasaka T., Nakanishi S., Jingami H., Morikawa K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature. 2000 Oct 26;407(6807):971–977. doi: 10.1038/35039564. [DOI] [PubMed] [Google Scholar]
  33. Liang G., Hai T. Characterization of human activating transcription factor 4, a transcriptional activator that interacts with multiple domains of cAMP-responsive element-binding protein (CREB)-binding protein. J Biol Chem. 1997 Sep 19;272(38):24088–24095. doi: 10.1074/jbc.272.38.24088. [DOI] [PubMed] [Google Scholar]
  34. Macek T. A., Schaffhauser H., Conn P. J. Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. J Neurosci. 1998 Aug 15;18(16):6138–6146. doi: 10.1523/JNEUROSCI.18-16-06138.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Masugi M., Yokoi M., Shigemoto R., Muguruma K., Watanabe Y., Sansig G., van der Putten H., Nakanishi S. Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. J Neurosci. 1999 Feb 1;19(3):955–963. doi: 10.1523/JNEUROSCI.19-03-00955.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. McPherson R. A., Harding A., Roy S., Lane A., Hancock J. F. Interactions of c-Raf-1 with phosphatidylserine and 14-3-3. Oncogene. 1999 Jul 1;18(26):3862–3869. doi: 10.1038/sj.onc.1202730. [DOI] [PubMed] [Google Scholar]
  37. Minakami R., Jinnai N., Sugiyama H. Phosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro. J Biol Chem. 1997 Aug 8;272(32):20291–20298. doi: 10.1074/jbc.272.32.20291. [DOI] [PubMed] [Google Scholar]
  38. Mouillac B., Caron M., Bonin H., Dennis M., Bouvier M. Agonist-modulated palmitoylation of beta 2-adrenergic receptor in Sf9 cells. J Biol Chem. 1992 Oct 25;267(30):21733–21737. [PubMed] [Google Scholar]
  39. Nakajima Y., Yamamoto T., Nakayama T., Nakanishi S. A relationship between protein kinase C phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7. J Biol Chem. 1999 Sep 24;274(39):27573–27577. doi: 10.1074/jbc.274.39.27573. [DOI] [PubMed] [Google Scholar]
  40. Nehring R. B., Horikawa H. P., El Far O., Kneussel M., Brandstätter J. H., Stamm S., Wischmeyer E., Betz H., Karschin A. The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J Biol Chem. 2000 Nov 10;275(45):35185–35191. doi: 10.1074/jbc.M002727200. [DOI] [PubMed] [Google Scholar]
  41. Ng G. Y., O'Dowd B. F., Caron M., Dennis M., Brann M. R., George S. R. Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J Neurochem. 1994 Nov;63(5):1589–1595. doi: 10.1046/j.1471-4159.1994.63051589.x. [DOI] [PubMed] [Google Scholar]
  42. O'Connor V., El Far O., Bofill-Cardona E., Nanoff C., Freissmuth M., Karschin A., Airas J. M., Betz H., Boehm S. Calmodulin dependence of presynaptic metabotropic glutamate receptor signaling. Science. 1999 Nov 5;286(5442):1180–1184. doi: 10.1126/science.286.5442.1180. [DOI] [PubMed] [Google Scholar]
  43. O'Hara P. J., Sheppard P. O., Thøgersen H., Venezia D., Haldeman B. A., McGrane V., Houamed K. M., Thomsen C., Gilbert T. L., Mulvihill E. R. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron. 1993 Jul;11(1):41–52. doi: 10.1016/0896-6273(93)90269-w. [DOI] [PubMed] [Google Scholar]
  44. Oh B. H., Pandit J., Kang C. H., Nikaido K., Gokcen S., Ames G. F., Kim S. H. Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J Biol Chem. 1993 May 25;268(15):11348–11355. [PubMed] [Google Scholar]
  45. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  46. Perroy J., Gutierrez G. J., Coulon V., Bockaert J., Pin J. P., Fagni L. The C terminus of the metabotropic glutamate receptor subtypes 2 and 7 specifies the receptor signaling pathways. J Biol Chem. 2001 Oct 2;276(49):45800–45805. doi: 10.1074/jbc.M106876200. [DOI] [PubMed] [Google Scholar]
  47. Perroy J., Prezeau L., De Waard M., Shigemoto R., Bockaert J., Fagni L. Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. J Neurosci. 2000 Nov 1;20(21):7896–7904. doi: 10.1523/JNEUROSCI.20-21-07896.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pin J. P., Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology. 1995 Jan;34(1):1–26. doi: 10.1016/0028-3908(94)00129-g. [DOI] [PubMed] [Google Scholar]
  49. Prezeau L., Richman J. G., Edwards S. W., Limbird L. E. The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes. J Biol Chem. 1999 May 7;274(19):13462–13469. doi: 10.1074/jbc.274.19.13462. [DOI] [PubMed] [Google Scholar]
  50. Robbins M. J., Calver A. R., Filippov A. K., Hirst W. D., Russell R. B., Wood M. D., Nasir S., Couve A., Brown D. A., Moss S. J. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. J Neurosci. 2001 Oct 15;21(20):8043–8052. doi: 10.1523/JNEUROSCI.21-20-08043.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Roth D., Birkenfeld J., Betz H. Dominant-negative alleles of 14-3-3 proteins cause defects in actin organization and vesicle targeting in the yeast Saccharomyces cerevisiae. FEBS Lett. 1999 Nov 5;460(3):411–416. doi: 10.1016/s0014-5793(99)01383-6. [DOI] [PubMed] [Google Scholar]
  52. Sansig G., Bushell T. J., Clarke V. R., Rozov A., Burnashev N., Portet C., Gasparini F., Schmutz M., Klebs K., Shigemoto R. Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J Neurosci. 2001 Nov 15;21(22):8734–8745. doi: 10.1523/JNEUROSCI.21-22-08734.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Shigemoto R., Kinoshita A., Wada E., Nomura S., Ohishi H., Takada M., Flor P. J., Neki A., Abe T., Nakanishi S. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci. 1997 Oct 1;17(19):7503–7522. doi: 10.1523/JNEUROSCI.17-19-07503.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Shigemoto R., Kulik A., Roberts J. D., Ohishi H., Nusser Z., Kaneko T., Somogyi P. Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature. 1996 Jun 6;381(6582):523–525. doi: 10.1038/381523a0. [DOI] [PubMed] [Google Scholar]
  55. Shimizu M., Nomura Y., Suzuki H., Ichikawa E., Takeuchi A., Suzuki M., Nakamura T., Nakajima T., Oda K. Activation of the rat cyclin A promoter by ATF2 and Jun family members and its suppression by ATF4. Exp Cell Res. 1998 Feb 25;239(1):93–103. doi: 10.1006/excr.1997.3884. [DOI] [PubMed] [Google Scholar]
  56. Staudinger J., Lu J., Olson E. N. Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J Biol Chem. 1997 Dec 19;272(51):32019–32024. doi: 10.1074/jbc.272.51.32019. [DOI] [PubMed] [Google Scholar]
  57. Staudinger J., Zhou J., Burgess R., Elledge S. J., Olson E. N. PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol. 1995 Feb;128(3):263–271. doi: 10.1083/jcb.128.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Vernon E., Meyer G., Pickard L., Dev K., Molnar E., Collingridge G. L., Henley J. M. GABA(B) receptors couple directly to the transcription factor ATF4. Mol Cell Neurosci. 2001 Apr;17(4):637–645. doi: 10.1006/mcne.2000.0960. [DOI] [PubMed] [Google Scholar]
  59. Wang H., Zhang L., Liddington R., Fu H. Mutations in the hydrophobic surface of an amphipathic groove of 14-3-3zeta disrupt its interaction with Raf-1 kinase. J Biol Chem. 1998 Jun 26;273(26):16297–16304. doi: 10.1074/jbc.273.26.16297. [DOI] [PubMed] [Google Scholar]
  60. White J. H., McIllhinney R. A., Wise A., Ciruela F., Chan W. Y., Emson P. C., Billinton A., Marshall F. H. The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13967–13972. doi: 10.1073/pnas.240452197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. White J. H., Wise A., Main M. J., Green A., Fraser N. J., Disney G. H., Barnes A. A., Emson P., Foord S. M., Marshall F. H. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature. 1998 Dec 17;396(6712):679–682. doi: 10.1038/25354. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES