Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 1;365(Pt 3):773–781. doi: 10.1042/BJ20020168

Interactions defining the specificity between fungal xylanases and the xylanase-inhibiting protein XIP-I from wheat.

Ruth Flatman 1, W Russell McLauchlan 1, Nathalie Juge 1, Caroline Furniss 1, Jean-Guy Berrin 1, Richard K Hughes 1, Paloma Manzanares 1, John E Ladbury 1, Ronan O'Brien 1, Gary Williamson 1
PMCID: PMC1222710  PMID: 11955286

Abstract

We previously reported on the xylanase-inhibiting protein I (XIP-I) from wheat [McLauchlan, Garcia-Conesa, Williamson, Roza, Ravestein and Maat (1999), Biochem. J. 338, 441-446]. In the present study, we show that XIP-I inhibits family-10 and -11 fungal xylanases. The K(i) values for fungal xylanases ranged from 3.4 to 610 nM, but bacterial family-10 and -11 xylanases were not inhibited. Unlike many glycosidase inhibitors, XIP-I was not a slow-binding inhibitor of the Aspergillus niger xylanase. Isothermal titration calorimetry of the XIP-I-A. niger xylanase complex showed the formation of a stoichiometric (1:1) complex with a heat capacity change of -1.38 kJ x mol(-1) x K(-1), leading to a predicted buried surface area of approx. 2200+/-500 A(2) at the complex interface. For this complex with A. niger xylanase (K(i)=320 nM at pH 5.5), titration curves indicated that an observable interaction occurred at pH 4-7, and this was consistent with the pH profile of inhibition of activity. In contrast, the stronger complex between A. nidulans xylanase and XIP-I (K(i)=9 nM) led to an observable interaction across the entire pH range tested (3-9). Using surface plasmon resonance, we show that the differences in the binding affinity of XIP-I for A. niger and A. nidulans xylanase are due to a 200-fold lower dissociation rate k(off) for the latter, with only a small difference in association rate k(on).

Full Text

The Full Text of this article is available as a PDF (253.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albersheim P., Anderson A. J. Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1815–1819. doi: 10.1073/pnas.68.8.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergmann C. W., Ito Y., Singer D., Albersheim P., Darvill A. G., Benhamou N., Nuss L., Salvi G., Cervone F., De Lorenzo G. Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant J. 1994 May;5(5):625–634. doi: 10.1111/j.1365-313x.1994.00625.x. [DOI] [PubMed] [Google Scholar]
  3. Berrin J. G., Williamson G., Puigserver A., Chaix J. C., McLauchlan W. R., Juge N. High-level production of recombinant fungal endo-beta-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 2000 Jun;19(1):179–187. doi: 10.1006/prep.2000.1229. [DOI] [PubMed] [Google Scholar]
  4. Bompard-Gilles C., Rousseau P., Rougé P., Payan F. Substrate mimicry in the active center of a mammalian alpha-amylase: structural analysis of an enzyme-inhibitor complex. Structure. 1996 Dec 15;4(12):1441–1452. doi: 10.1016/s0969-2126(96)00151-7. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
  7. Gebruers K., Debyser W., Goesaert H., Proost P., Van Damme J, Delcour J. A. Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochem J. 2001 Jan 15;353(Pt 2):239–244. doi: 10.1042/0264-6021:3530239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giovane A., Balestrieri C., Quagliuolo L., Castaldo D., Servillo L. A glycoprotein inhibitor of pectin methylesterase in kiwi fruit. Purification by affinity chromatography and evidence of a ripening-related precursor. Eur J Biochem. 1995 Nov 1;233(3):926–929. doi: 10.1111/j.1432-1033.1995.926_3.x. [DOI] [PubMed] [Google Scholar]
  9. Greiner S., Krausgrill S., Rausch T. Cloning of a tobacco apoplasmic invertase inhibitor. Proof of function of the recombinant protein and expression analysis during plant development. Plant Physiol. 1998 Feb;116(2):733–742. doi: 10.1104/pp.116.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jaynes T. A., Nelson O. E. An invertase inactivator in maize endosperm and factors affecting inactivation. Plant Physiol. 1971 May;47(5):629–634. doi: 10.1104/pp.47.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnsson B., Löfås S., Lindquist G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem. 1991 Nov 1;198(2):268–277. doi: 10.1016/0003-2697(91)90424-r. [DOI] [PubMed] [Google Scholar]
  13. Jönsson U., Fägerstam L., Ivarsson B., Johnsson B., Karlsson R., Lundh K., Löfås S., Persson B., Roos H., Rönnberg I. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques. 1991 Nov;11(5):620–627. [PubMed] [Google Scholar]
  14. Koukiekolo R., Le Berre-Anton V., Desseaux V., Moreau Y., Rougé P., Marchis-Mouren G., Santimone M. Mechanism of porcine pancreatic alpha-amylase inhibition of amylose and maltopentaose hydrolysis by kidney bean (Phaseolus vulgaris) inhibitor and comparison with that by acarbose. Eur J Biochem. 1999 Oct 1;265(1):20–26. doi: 10.1046/j.1432-1327.1999.00611.x. [DOI] [PubMed] [Google Scholar]
  15. Kulkarni N., Shendye A., Rao M. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev. 1999 Jul;23(4):411–456. doi: 10.1111/j.1574-6976.1999.tb00407.x. [DOI] [PubMed] [Google Scholar]
  16. Ladbury J. E., Wright J. G., Sturtevant J. M., Sigler P. B. A thermodynamic study of the trp repressor-operator interaction. J Mol Biol. 1994 May 20;238(5):669–681. doi: 10.1006/jmbi.1994.1328. [DOI] [PubMed] [Google Scholar]
  17. Le Berre-Anton V., Bompard-Gilles C., Payan F., Rougé P. Characterization and functional properties of the alpha-amylase inhibitor (alpha-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta. 1997 Nov 14;1343(1):31–40. doi: 10.1016/s0167-4838(97)00100-3. [DOI] [PubMed] [Google Scholar]
  18. Legler G. Glycoside hydrolases: mechanistic information from studies with reversible and irreversible inhibitors. Adv Carbohydr Chem Biochem. 1990;48:319–384. doi: 10.1016/s0065-2318(08)60034-7. [DOI] [PubMed] [Google Scholar]
  19. Lin Z., Schwartz F. P., Eisenstein E. The hydrophobic nature of GroEL-substrate binding. J Biol Chem. 1995 Jan 20;270(3):1011–1014. doi: 10.1074/jbc.270.3.1011. [DOI] [PubMed] [Google Scholar]
  20. Livingstone J. R., Spolar R. S., Record M. T., Jr Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface area. Biochemistry. 1991 Apr 30;30(17):4237–4244. doi: 10.1021/bi00231a019. [DOI] [PubMed] [Google Scholar]
  21. Lo Conte L., Chothia C., Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol. 1999 Feb 5;285(5):2177–2198. doi: 10.1006/jmbi.1998.2439. [DOI] [PubMed] [Google Scholar]
  22. MacCabe A. P., Fernández-Espinar M. T., de Graaff L. H., Visser J., Ramón D. Identification, isolation and sequence of the Aspergillus nidulans xlnC gene encoding the 34-kDa xylanase. Gene. 1996 Oct 10;175(1-2):29–33. doi: 10.1016/0378-1119(96)00116-3. [DOI] [PubMed] [Google Scholar]
  23. McLauchlan W. R., Garcia-Conesa M. T., Williamson G., Roza M., Ravestein P., Maat J. A novel class of protein from wheat which inhibits xylanases. Biochem J. 1999 Mar 1;338(Pt 2):441–446. [PMC free article] [PubMed] [Google Scholar]
  24. Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
  25. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  26. Stotz H. U., Contos J. J., Powell A. L., Bennett A. B., Labavitch J. M. Structure and expression of an inhibitor of fungal polygalacturonases from tomato. Plant Mol Biol. 1994 Jul;25(4):607–617. doi: 10.1007/BF00029600. [DOI] [PubMed] [Google Scholar]
  27. Weselake R. J., Macgregor A. W., Hill R. D. An endogenous alpha-amylase inhibitor in barley kernels. Plant Physiol. 1983 Jul;72(3):809–812. doi: 10.1104/pp.72.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weselake R. J., Macgregor A. W., Hill R. D., Duckworth H. W. Purification and characteristics of an endogenous alpha-amylase inhibitor from barley kernels. Plant Physiol. 1983 Dec;73(4):1008–1012. doi: 10.1104/pp.73.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilcox E. R., Whitaker J. R. Some aspects of the mechanism of complexation of red kidney bean alpha-amylase inhibitor and alpha-amylase. Biochemistry. 1984 Apr 10;23(8):1783–1791. doi: 10.1021/bi00303a031. [DOI] [PubMed] [Google Scholar]
  30. Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES