Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 1;365(Pt 3):639–648. doi: 10.1042/BJ20011251

Copper uptake is required for pyrrolidine dithiocarbamate-mediated oxidation and protein level increase of p53 in cells.

Saori Furuta 1, Fausto Ortiz 1, Xiu Zhu Sun 1, Hsiao-Huei Wu 1, Andrew Mason 1, Jamil Momand 1
PMCID: PMC1222712  PMID: 11964141

Abstract

The p53 tumour-suppressor protein is a transcription factor that activates the expression of genes involved in cell cycle arrest, apoptosis and DNA repair. The p53 protein is vulnerable to oxidation at cysteine thiol groups. The metal-chelating dithiocarbamates, pyrrolidine dithiocarbamate (PDTC), diethyldithiocarbamate, ethylene(bis)dithiocarbamate and H(2)O(2) were tested for their oxidative effects on p53 in cultured human breast cancer cells. Only PDTC oxidized p53, although all oxidants tested increased the p53 level. Inductively coupled plasma MS analysis indicated that the addition of 60 microM PDTC increased the cellular copper concentration by 4-fold, which was the highest level of copper accumulated amongst all the oxidants tested. Bathocuproinedisulphonic acid, a membrane-impermeable Cu(I) chelator inhibited the PDTC-mediated copper accumulation. Bathocuproinedisulphonic acid as well as the hydroxyl radical scavenger d-mannitol inhibited the PDTC-dependent increase in p53 protein and oxidation. Our results show that a low level of copper accumulation in the range of 25-40 microg/g of cellular protein increases the steady-state levels of p53. At copper accumulation levels higher than 60 microg/g of cellular protein, p53 is oxidized. These results suggest that p53 is vulnerable to free radical-mediated oxidation at cysteine residues.

Full Text

The Full Text of this article is available as a PDF (456.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel K., Wagner P., Boldyreff B., Issinger O. G., Montenarh M. Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory beta-subunit of protein kinase CK2. Oncogene. 1995 Nov 16;11(10):1971–1978. [PubMed] [Google Scholar]
  2. Blum-Degen D., Haas M., Pohli S., Harth R., Römer W., Oettel M., Riederer P., Götz M. E. Scavestrogens protect IMR 32 cells from oxidative stress-induced cell death. Toxicol Appl Pharmacol. 1998 Sep;152(1):49–55. doi: 10.1006/taap.1998.8503. [DOI] [PubMed] [Google Scholar]
  3. Chen Q. M., Bartholomew J. C., Campisi J., Acosta M., Reagan J. D., Ames B. N. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J. 1998 May 15;332(Pt 1):43–50. doi: 10.1042/bj3320043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen S. H., Liu S. H., Liang Y. C., Lin J. K., Lin-Shiau S. Y. Death signaling pathway induced by pyrrolidine dithiocarbamate-Cu(2+) complex in the cultured rat cortical astrocytes. Glia. 2000 Sep;31(3):249–261. doi: 10.1002/1098-1136(200009)31:3<249::aid-glia60>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  5. Chernov M. V., Ramana C. V., Adler V. V., Stark G. R. Stabilization and activation of p53 are regulated independently by different phosphorylation events. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2284–2289. doi: 10.1073/pnas.95.5.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cho Y., Gorina S., Jeffrey P. D., Pavletich N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994 Jul 15;265(5170):346–355. doi: 10.1126/science.8023157. [DOI] [PubMed] [Google Scholar]
  7. Chung K. C., Park J. H., Kim C. H., Lee H. W., Sato N., Uchiyama Y., Ahn Y. S. Novel biphasic effect of pyrrolidine dithiocarbamate on neuronal cell viability is mediated by the differential regulation of intracellular zinc and copper ion levels, NF-kappaB, and MAP kinases. J Neurosci Res. 2000 Jan 1;59(1):117–125. [PubMed] [Google Scholar]
  8. Claiborne A., Mallett T. C., Yeh J. I., Luba J., Parsonage D. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation. Adv Protein Chem. 2001;58:215–276. doi: 10.1016/s0065-3233(01)58006-7. [DOI] [PubMed] [Google Scholar]
  9. Delphin C., Cahen P., Lawrence J. J., Baudier J. Characterization of baculovirus recombinant wild-type p53. Dimerization of p53 is required for high-affinity DNA binding and cysteine oxidation inhibits p53 DNA binding. Eur J Biochem. 1994 Jul 15;223(2):683–692. doi: 10.1111/j.1432-1033.1994.tb19041.x. [DOI] [PubMed] [Google Scholar]
  10. Delphin C., Huang K. P., Scotto C., Chapel A., Vincon M., Chambaz E., Garin J., Baudier J. The in vitro phosphorylation of p53 by calcium-dependent protein kinase C--characterization of a protein-kinase-C-binding site on p53. Eur J Biochem. 1997 May 1;245(3):684–692. doi: 10.1111/j.1432-1033.1997.t01-1-00684.x. [DOI] [PubMed] [Google Scholar]
  11. Erl W., Weber C., Hansson G. K. Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density, and the presence of Cu(2+) and Zn(2+). Am J Physiol Cell Physiol. 2000 Jun;278(6):C1116–C1125. doi: 10.1152/ajpcell.2000.278.6.C1116. [DOI] [PubMed] [Google Scholar]
  12. Gansauge S., Gansauge F., Gause H., Poch B., Schoenberg M. H., Beger H. G. The induction of apoptosis in proliferating human fibroblasts by oxygen radicals is associated with a p53- and p21WAF1CIP1 induction. FEBS Lett. 1997 Mar 3;404(1):6–10. doi: 10.1016/s0014-5793(97)00059-8. [DOI] [PubMed] [Google Scholar]
  13. Gu W., Roeder R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997 Aug 22;90(4):595–606. doi: 10.1016/s0092-8674(00)80521-8. [DOI] [PubMed] [Google Scholar]
  14. Hainaut P., Milner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 1993 Oct 1;53(19):4469–4473. [PubMed] [Google Scholar]
  15. Hainaut P., Rolley N., Davies M., Milner J. Modulation by copper of p53 conformation and sequence-specific DNA binding: role for Cu(II)/Cu(I) redox mechanism. Oncogene. 1995 Jan 5;10(1):27–32. [PubMed] [Google Scholar]
  16. Hassett R., Kosman D. J. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem. 1995 Jan 6;270(1):128–134. doi: 10.1074/jbc.270.1.128. [DOI] [PubMed] [Google Scholar]
  17. Hirao A., Kong Y. Y., Matsuoka S., Wakeham A., Ruland J., Yoshida H., Liu D., Elledge S. J., Mak T. W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000 Mar 10;287(5459):1824–1827. doi: 10.1126/science.287.5459.1824. [DOI] [PubMed] [Google Scholar]
  18. Huang C., Zhang Z., Ding M., Li J., Ye J., Leonard S. S., Shen H. M., Butterworth L., Lu Y., Costa M. Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J Biol Chem. 2000 Oct 20;275(42):32516–32522. doi: 10.1074/jbc.M005366200. [DOI] [PubMed] [Google Scholar]
  19. Huang L. C., Clarkin K. C., Wahl G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4827–4832. doi: 10.1073/pnas.93.10.4827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hupp T. R., Lane D. P. Allosteric activation of latent p53 tetramers. Curr Biol. 1994 Oct 1;4(10):865–875. doi: 10.1016/s0960-9822(00)00195-0. [DOI] [PubMed] [Google Scholar]
  21. Iseki A., Kambe F., Okumura K., Niwata S., Yamamoto R., Hayakawa T., Seo H. Pyrrolidine dithiocarbamate inhibits TNF-alpha-dependent activation of NF-kappaB by increasing intracellular copper level in human aortic smooth muscle cells. Biochem Biophys Res Commun. 2000 Sep 16;276(1):88–92. doi: 10.1006/bbrc.2000.3452. [DOI] [PubMed] [Google Scholar]
  22. Jayaraman L., Murthy K. G., Zhu C., Curran T., Xanthoudakis S., Prives C. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 1997 Mar 1;11(5):558–570. doi: 10.1101/gad.11.5.558. [DOI] [PubMed] [Google Scholar]
  23. Kim S. T., Lim D. S., Canman C. E., Kastan M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem. 1999 Dec 31;274(53):37538–37543. doi: 10.1074/jbc.274.53.37538. [DOI] [PubMed] [Google Scholar]
  24. Lee J., Prohaska J. R., Thiele D. J. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6842–6847. doi: 10.1073/pnas.111058698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lloyd D. R., Phillips D. H. Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat Res. 1999 Mar 8;424(1-2):23–36. doi: 10.1016/s0027-5107(99)00005-6. [DOI] [PubMed] [Google Scholar]
  26. Maki C. G., Huibregtse J. M., Howley P. M. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res. 1996 Jun 1;56(11):2649–2654. [PubMed] [Google Scholar]
  27. Makmura L., Hamann M., Areopagita A., Furuta S., Muñoz A., Momand J. Development of a sensitive assay to detect reversibly oxidized protein cysteine sulfhydryl groups. Antioxid Redox Signal. 2001 Dec;3(6):1105–1118. doi: 10.1089/152308601317203611. [DOI] [PubMed] [Google Scholar]
  28. Malek A. M., Goss G. G., Jiang L., Izumo S., Alper S. L. Mannitol at clinical concentrations activates multiple signaling pathways and induces apoptosis in endothelial cells. Stroke. 1998 Dec;29(12):2631–2640. doi: 10.1161/01.str.29.12.2631. [DOI] [PubMed] [Google Scholar]
  29. Martins L. J., Jensen L. T., Simon J. R., Keller G. L., Winge D. R., Simons J. R. Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem. 1998 Sep 11;273(37):23716–23721. doi: 10.1074/jbc.273.37.23716. [DOI] [PubMed] [Google Scholar]
  30. Mazière C., Meignotte A., Dantin F., Conte M. A., Mazière J. C. Oxidized LDL induces an oxidative stress and activates the tumor suppressor p53 in MRC5 human fibroblasts. Biochem Biophys Res Commun. 2000 Sep 24;276(2):718–723. doi: 10.1006/bbrc.2000.3528. [DOI] [PubMed] [Google Scholar]
  31. Meek D. W. Post-translational modification of p53. Semin Cancer Biol. 1994 Jun;5(3):203–210. [PubMed] [Google Scholar]
  32. Milne D. M., Campbell D. G., Caudwell F. B., Meek D. W. Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases. J Biol Chem. 1994 Mar 25;269(12):9253–9260. [PubMed] [Google Scholar]
  33. Morré D. J., Sedlak D., Tang X., Chueh P. J., Geng T., Morré D. M. Surface NADH oxidase of HeLa cells lacks intrinsic membrane binding motifs. Arch Biochem Biophys. 2001 Aug 15;392(2):251–256. doi: 10.1006/abbi.2001.2436. [DOI] [PubMed] [Google Scholar]
  34. Nakamura T., Sakamoto K. Reactive oxygen species up-regulates cyclooxygenase-2, p53, and Bax mRNA expression in bovine luteal cells. Biochem Biophys Res Commun. 2001 Jun 1;284(1):203–210. doi: 10.1006/bbrc.2001.4927. [DOI] [PubMed] [Google Scholar]
  35. Narayanan V. S., Fitch C. A., Levenson C. W. Tumor suppressor protein p53 mRNA and subcellular localization are altered by changes in cellular copper in human Hep G2 cells. J Nutr. 2001 May;131(5):1427–1432. doi: 10.1093/jn/131.5.1427. [DOI] [PubMed] [Google Scholar]
  36. Perkins D., Pereira E. F. R., Gober M., Yarowsky P. J., Aurelian L. The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol. 2002 Feb;76(3):1435–1449. doi: 10.1128/JVI.76.3.1435-1449.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pise-Masison C. A., Radonovich M., Sakaguchi K., Appella E., Brady J. N. Phosphorylation of p53: a novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1-transformed cells. J Virol. 1998 Aug;72(8):6348–6355. doi: 10.1128/jvi.72.8.6348-6355.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Prives C., Hall P. A. The p53 pathway. J Pathol. 1999 Jan;187(1):112–126. doi: 10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  39. Rae T. D., Schmidt P. J., Pufahl R. A., Culotta V. C., O'Halloran T. V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science. 1999 Apr 30;284(5415):805–808. doi: 10.1126/science.284.5415.805. [DOI] [PubMed] [Google Scholar]
  40. Rainwater R., Parks D., Anderson M. E., Tegtmeyer P., Mann K. Role of cysteine residues in regulation of p53 function. Mol Cell Biol. 1995 Jul;15(7):3892–3903. doi: 10.1128/mcb.15.7.3892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sakaguchi K., Herrera J. E., Saito S., Miki T., Bustin M., Vassilev A., Anderson C. W., Appella E. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 1998 Sep 15;12(18):2831–2841. doi: 10.1101/gad.12.18.2831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shieh S. Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997 Oct 31;91(3):325–334. doi: 10.1016/s0092-8674(00)80416-x. [DOI] [PubMed] [Google Scholar]
  43. Thomas J. A., Poland B., Honzatko R. Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch Biochem Biophys. 1995 May 10;319(1):1–9. doi: 10.1006/abbi.1995.1261. [DOI] [PubMed] [Google Scholar]
  44. Verhaegh G. W., Richard M. J., Hainaut P. Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol Cell Biol. 1997 Oct;17(10):5699–5706. doi: 10.1128/mcb.17.10.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vile G. F. Active oxygen species mediate the solar ultraviolet radiation-dependent increase in the tumour suppressor protein p53 in human skin fibroblasts. FEBS Lett. 1997 Jul 21;412(1):70–74. doi: 10.1016/s0014-5793(97)00748-5. [DOI] [PubMed] [Google Scholar]
  46. Vile G. F., Rothwell L. A., Kettle A. J. Hypochlorous acid activates the tumor suppressor protein p53 in cultured human skin fibroblasts. Arch Biochem Biophys. 1998 Nov 1;359(1):51–56. doi: 10.1006/abbi.1998.0881. [DOI] [PubMed] [Google Scholar]
  47. Wang Y., Prives C. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature. 1995 Jul 6;376(6535):88–91. doi: 10.1038/376088a0. [DOI] [PubMed] [Google Scholar]
  48. Waterman M. J., Stavridi E. S., Waterman J. L., Halazonetis T. D. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 1998 Jun;19(2):175–178. doi: 10.1038/542. [DOI] [PubMed] [Google Scholar]
  49. Wu H. H., Momand J. Pyrrolidine dithiocarbamate prevents p53 activation and promotes p53 cysteine residue oxidation. J Biol Chem. 1998 Jul 24;273(30):18898–18905. doi: 10.1074/jbc.273.30.18898. [DOI] [PubMed] [Google Scholar]
  50. Wu H. H., Thomas J. A., Momand J. p53 protein oxidation in cultured cells in response to pyrrolidine dithiocarbamate: a novel method for relating the amount of p53 oxidation in vivo to the regulation of p53-responsive genes. Biochem J. 2000 Oct 1;351(Pt 1):87–93. doi: 10.1042/0264-6021:3510087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yin Y., Terauchi Y., Solomon G. G., Aizawa S., Rangarajan P. N., Yazaki Y., Kadowaki T., Barrett J. C. Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature. 1998 Feb 12;391(6668):707–710. doi: 10.1038/35648. [DOI] [PubMed] [Google Scholar]
  52. You B. Y., Wang Y. H., Kuo M. L. Role of reactive oxygen species in cupric 8-quinolinoxide-induced genotoxic effect. Mutat Res. 2001 Apr 5;491(1-2):45–56. doi: 10.1016/s1383-5718(00)00169-8. [DOI] [PubMed] [Google Scholar]
  53. d'Ischia M., Palumbo A., Buzzo F. Interactions of nitric oxide with lipid peroxidation products under aerobic conditions: inhibitory effects on the formation of malondialdehyde and related thiobarbituric acid-reactive substances. Nitric Oxide. 2000 Feb;4(1):4–14. doi: 10.1006/niox.1999.0268. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES