Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 1;365(Pt 3):749–756. doi: 10.1042/BJ20020141

Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase.

Jie Jia 1, Feng Xu 1, Xianglong Chen 1, Li Chen 1, Youxin Jin 1, Debao T P Wang 1
PMCID: PMC1222715  PMID: 11966471

Abstract

Bacillus subtilis tryptophanyl-tRNA synthetase (TrpRS) is a homodimeric enzyme. A model for its ability to recognize tRNA(Trp) in B. subtilis was proposed by using computer modelling. This was based on the the fact that there is high homology among bacterial TrpRSs [Chen, Jiang, Jin and Wang (2001) Acta Biochim. Biophys. Sinica 33, 687-690], in which the enzyme dimer binds to two tRNA(Trp) molecules and each tRNA(Trp) is bound to two different domains across the surface of the dimer. In this work, three deletion mutants of TrpRS were constructed and their products were purified. After determining the kinetic parameters of the mutants in the two-step reaction, it was found that the relative activities of wild-type and mutant enzymes had changed little in the ATP-pyrophosphate exchange reaction. In contrast, the activities of three mutant proteins were much decreased in the tRNA(Trp) aminoacylation assay. Deletion of residues 108-122 and residues 234-238 caused 44% and 80% reductions in the activity, respectively. When both regions were deleted, the aminoacylation activity of the TrpRS mutant was too low to be determined using tRNA(Trp) at the limiting concentration. Gel-retardation assays showed that the acceptor minihelix and the anticodon microhelix were recognized by the domains of TrpRS spanning residues 108-122 and residues 234-238 respectively. In addition, the deletion of amino acids 234-238 affected the normal induced expression of TrpRS at 37 degrees C. In conclusion, residues 108-122 and 234-238 were found essential for tRNA(Trp) recognition.

Full Text

The Full Text of this article is available as a PDF (229.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cavarelli J., Eriani G., Rees B., Ruff M., Boeglin M., Mitschler A., Martin F., Gangloff J., Thierry J. C., Moras D. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 1994 Jan 15;13(2):327–337. doi: 10.1002/j.1460-2075.1994.tb06265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen L., Jiang G., Jin Y. X., Wang D. B. Homology Modeling of Bacillus subtilis Tryptophanyl-tRNA Synthetase. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2001;33(6):687–690. [PubMed] [Google Scholar]
  3. Chow K. C., Wong J. T. Cloning and nucleotide sequence of the structural gene coding for Bacillus subtilis tryptophanyl-tRNA synthetase. Gene. 1988 Dec 20;73(2):537–543. doi: 10.1016/0378-1119(88)90518-5. [DOI] [PubMed] [Google Scholar]
  4. Chow K. C., Xue H., Shi W., Wong J. T. Mutational identification of an essential tryptophan in tryptophanyl-tRNA synthetase of Bacillus subtilis. J Biol Chem. 1992 May 5;267(13):9146–9149. [PubMed] [Google Scholar]
  5. Cusack S., Berthet-Colominas C., Härtlein M., Nassar N., Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature. 1990 Sep 20;347(6290):249–255. doi: 10.1038/347249a0. [DOI] [PubMed] [Google Scholar]
  6. Cusack S. Eleven down and nine to go. Nat Struct Biol. 1995 Oct;2(10):824–831. doi: 10.1038/nsb1095-824. [DOI] [PubMed] [Google Scholar]
  7. Doublié S., Bricogne G., Gilmore C., Carter C. W., Jr Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. Structure. 1995 Jan 15;3(1):17–31. doi: 10.1016/s0969-2126(01)00132-0. [DOI] [PubMed] [Google Scholar]
  8. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  9. Hogue C. W., Doublié S., Xue H., Wong J. T., Carter C. W., Jr, Szabo A. G. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92. J Mol Biol. 1996 Jul 19;260(3):446–466. doi: 10.1006/jmbi.1996.0413. [DOI] [PubMed] [Google Scholar]
  10. Hountondji C., Dessen P., Blanquet S. Sequence similarities among the family of aminoacyl-tRNA synthetases. Biochimie. 1986 Sep;68(9):1071–1078. doi: 10.1016/s0300-9084(86)80181-x. [DOI] [PubMed] [Google Scholar]
  11. Ilyin V. A., Temple B., Hu M., Li G., Yin Y., Vachette P., Carter C. W., Jr 2.9 A crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site. Protein Sci. 2000 Feb;9(2):218–231. doi: 10.1110/ps.9.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jahn M., Rogers M. J., Söll D. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature. 1991 Jul 18;352(6332):258–260. doi: 10.1038/352258a0. [DOI] [PubMed] [Google Scholar]
  13. Jorgensen R., Søgaard T. M., Rossing A. B., Martensen P. M., Justesen J. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem. 2000 Jun 2;275(22):16820–16826. doi: 10.1074/jbc.275.22.16820. [DOI] [PubMed] [Google Scholar]
  14. Kaminska M., Deniziak M., Kerjan P., Barciszewski J., Mirande M. A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation. EMBO J. 2000 Dec 15;19(24):6908–6917. doi: 10.1093/emboj/19.24.6908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim S. H., Quigley G. J., Suddath F. L., McPherson A., Sneden D., Kim J. J., Weinzierl J., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science. 1973 Jan 19;179(4070):285–288. doi: 10.1126/science.179.4070.285. [DOI] [PubMed] [Google Scholar]
  16. Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  17. Ladner J. E., Jack A., Robertus J. D., Brown R. S., Rhodes D., Clark B. F., Klug A. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4414–4418. doi: 10.1073/pnas.72.11.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pütz J., Puglisi J. D., Florentz C., Giegé R. Identity elements for specific aminoacylation of yeast tRNA(Asp) by cognate aspartyl-tRNA synthetase. Science. 1991 Jun 21;252(5013):1696–1699. doi: 10.1126/science.2047878. [DOI] [PubMed] [Google Scholar]
  19. Rich A., Schimmel P. R. Structural organization of complexes of transfer RNAs with aminoacyl transfer RNA synthetases. Nucleic Acids Res. 1977;4(5):1649–1665. doi: 10.1093/nar/4.5.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rould M. A., Perona J. J., Söll D., Steitz T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989 Dec 1;246(4934):1135–1142. doi: 10.1126/science.2479982. [DOI] [PubMed] [Google Scholar]
  21. Schimmel P., Giegé R., Moras D., Yokoyama S. An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763–8768. doi: 10.1073/pnas.90.19.8763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schimmel P., Ribas de Pouplana L. Transfer RNA: from minihelix to genetic code. Cell. 1995 Jun 30;81(7):983–986. doi: 10.1016/s0092-8674(05)80002-9. [DOI] [PubMed] [Google Scholar]
  23. Sever S., Rogers K., Rogers M. J., Carter C., Jr, Söll D. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding. Biochemistry. 1996 Jan 9;35(1):32–40. doi: 10.1021/bi952103d. [DOI] [PubMed] [Google Scholar]
  24. Shi W., Chow K. C., Wong J. T. High-level expression of Bacillus subtilis tryptophanyl-tRNA synthetase in Escherichia coli. Biochem Cell Biol. 1990 Feb;68(2):492–495. doi: 10.1139/o90-069. [DOI] [PubMed] [Google Scholar]
  25. Steer B. A., Schimmel P. Domain-domain communication in a miniature archaebacterial tRNA synthetase. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13644–13649. doi: 10.1073/pnas.96.24.13644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Webster T. A., Lathrop R. H., Smith T. F. Prediction of a common structural domain in aminoacyl-tRNA synthetases through use of a new pattern-directed inference system. Biochemistry. 1987 Nov 3;26(22):6950–6957. doi: 10.1021/bi00396a014. [DOI] [PubMed] [Google Scholar]
  27. Webster T., Tsai H., Kula M., Mackie G. A., Schimmel P. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Science. 1984 Dec 14;226(4680):1315–1317. doi: 10.1126/science.6390679. [DOI] [PubMed] [Google Scholar]
  28. Xu F., Chen X., Xin L., Chen L., Jin Y., Wang D. Species-specific differences in the operational RNA code for aminoacylation of tRNA(Trp). Nucleic Acids Res. 2001 Oct 15;29(20):4125–4133. doi: 10.1093/nar/29.20.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Xu F., Jia J., Jin Y., Wang D. T. High-level expression and single-step purification of human tryptophanyl-tRNA synthetase. Protein Expr Purif. 2001 Nov;23(2):296–300. doi: 10.1006/prep.2001.1500. [DOI] [PubMed] [Google Scholar]
  30. Xu Z. J., Love M. L., Ma L. Y., Blum M., Bronskill P. M., Bernstein J., Grey A. A., Hofmann T., Camerman N., Wong J. T. Tryptophanyl-tRNA synthetase from Bacillus subtilis. Characterization and role of hydrophobicity in substrate recognition. J Biol Chem. 1989 Mar 15;264(8):4304–4311. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES