Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 1;365(Pt 3):801–808. doi: 10.1042/BJ20020325

Fructosamine 3-kinase is involved in an intracellular deglycation pathway in human erythrocytes.

Ghislain Delpierre 1, François Collard 1, Juliette Fortpied 1, Emile Van Schaftingen 1
PMCID: PMC1222720  PMID: 11975663

Abstract

Fructosamine 3-kinase, which phosphorylates low-molecular-mass and protein-bound fructosamines on the third carbon of their deoxyfructose moiety, is quite active in erythrocytes, and was proposed to initiate a process removing fructosamine residues from proteins. In the present study, we show that incubation of human erythrocytes with 200 mM glucose not only caused the progressive formation of glycated haemoglobin, but also increased the level of an anionic form of haemoglobin containing alkali-labile phosphate, to approx. 5% of total haemoglobin. 1-Deoxy-1-morpholinofructose (DMF), a substrate and competitive inhibitor of fructosamine 3-kinase, doubled the rate of accumulation of glycated haemoglobin, but markedly decreased the amount of haemoglobin containing alkali-labile phosphate. The latter corresponds therefore to haemoglobin bound to a fructosamine 3-phosphate group (FN3P-Hb). Returning erythrocytes incubated with 200 mM glucose and DMF to a low-glucose medium devoid of DMF caused a decrease in the amount of glycated haemoglobin, a transient increase in FN3P-Hb and a net decrease in the sum (glycated haemoglobin+FN3P-Hb). These effects were prevented by DMF, indicating that fructosamine 3-kinase is involved in the removal of fructosamine residues. The second step of this 'deglycation' process is most likely a spontaneous decomposition of the fructosamine 3-phosphate residues to a free amine, 3-deoxyglucosone and P(i). This is consistent with the findings that 2-oxo-3-deoxygluconate, the product of 3-deoxyglucosone oxidation, is formed in erythrocytes incubated for 2 days with 200 mM glucose in a sufficient amount to account for the removal of fructosamine residues from proteins, and that DMF appears to inhibit the formation of 2-oxo-3-deoxygluconate from elevated glucose concentrations.

Full Text

The Full Text of this article is available as a PDF (187.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baynes J. W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr;40(4):405–412. doi: 10.2337/diab.40.4.405. [DOI] [PubMed] [Google Scholar]
  2. Baynes J. W., Thorpe S. R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999 Jan;48(1):1–9. doi: 10.2337/diabetes.48.1.1. [DOI] [PubMed] [Google Scholar]
  3. Bender R., Gottschalk G. Enzymatic synthesis of 2-keto-3-deoxy-d-glucose from D-gluconate. Anal Biochem. 1974 Sep;61(1):275–279. doi: 10.1016/0003-2697(74)90355-8. [DOI] [PubMed] [Google Scholar]
  4. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813–820. doi: 10.1038/414813a. [DOI] [PubMed] [Google Scholar]
  5. Brownlee M. Lilly Lecture 1993. Glycation and diabetic complications. Diabetes. 1994 Jun;43(6):836–841. doi: 10.2337/diab.43.6.836. [DOI] [PubMed] [Google Scholar]
  6. Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984 Oct;101(4):527–537. doi: 10.7326/0003-4819-101-4-527. [DOI] [PubMed] [Google Scholar]
  7. Bunn H. F., Haney D. N., Kamin S., Gabbay K. H., Gallop P. M. The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo. J Clin Invest. 1976 Jun;57(6):1652–1659. doi: 10.1172/JCI108436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Delpierre G., Rider M. H., Collard F., Stroobant V., Vanstapel F., Santos H., Van Schaftingen E. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes. 2000 Oct;49(10):1627–1634. doi: 10.2337/diabetes.49.10.1627. [DOI] [PubMed] [Google Scholar]
  9. Delpierre G., Vanstapel F., Stroobant V., Van Schaftingen E. Conversion of a synthetic fructosamine into its 3-phospho derivative in human erythrocytes. Biochem J. 2000 Dec 15;352(Pt 3):835–839. [PMC free article] [PubMed] [Google Scholar]
  10. Fujii E., Iwase H., Ishii-Karakasa I., Yajima Y., Hotta K. The presence of 2-keto-3-deoxygluconic acid and oxoaldehyde dehydrogenase activity in human erythrocytes. Biochem Biophys Res Commun. 1995 May 25;210(3):852–857. doi: 10.1006/bbrc.1995.1736. [DOI] [PubMed] [Google Scholar]
  11. Goldstein D. E., Little R. R., Wiedmeyer H. M., England J. D., McKenzie E. M. Glycated hemoglobin: methodologies and clinical applications. Clin Chem. 1986 Oct;32(10 Suppl):B64–B70. [PubMed] [Google Scholar]
  12. Gould B. J., Davie S. J., Yudkin J. S. Investigation of the mechanism underlying the variability of glycated haemoglobin in non-diabetic subjects not related to glycaemia. Clin Chim Acta. 1997 Apr 4;260(1):49–64. doi: 10.1016/s0009-8981(96)06508-4. [DOI] [PubMed] [Google Scholar]
  13. Higgins P. J., Bunn H. F. Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J Biol Chem. 1981 May 25;256(10):5204–5208. [PubMed] [Google Scholar]
  14. Hotta N. New approaches for treatment in diabetes: aldose reductase inhibitors. Biomed Pharmacother. 1995;49(5):232–243. doi: 10.1016/0753-3322(96)82629-1. [DOI] [PubMed] [Google Scholar]
  15. Ishii H., Koya D., King G. L. Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus. J Mol Med (Berl) 1998 Jan;76(1):21–31. doi: 10.1007/s001090050187. [DOI] [PubMed] [Google Scholar]
  16. Itaya K., Ui M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta. 1966 Sep;14(3):361–366. doi: 10.1016/0009-8981(66)90114-8. [DOI] [PubMed] [Google Scholar]
  17. Kato H., van Chuyen N., Shinoda T., Sekiya F., Hayase F. Metabolism of 3-deoxyglucosone, an intermediate compound in the Maillard reaction, administered orally or intravenously to rats. Biochim Biophys Acta. 1990 Jul 20;1035(1):71–76. doi: 10.1016/0304-4165(90)90175-v. [DOI] [PubMed] [Google Scholar]
  18. Liang Z. Q., Hayase F., Kato H. Purification and characterization of NADPH-dependent 2-oxoaldehyde reductase from porcine liver. A self-defence enzyme preventing the advanced stage of the Maillard reaction. Eur J Biochem. 1991 Apr 23;197(2):373–379. doi: 10.1111/j.1432-1033.1991.tb15921.x. [DOI] [PubMed] [Google Scholar]
  19. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  20. Pouyssegur J., Stoeber F. Etude du rameu dégradatif commun des hexuronates chez Escherichia coli K 12. Purification, propriétés et individualité de la 2-céto-3-désoxy-D-gluconokinase. Biochimie. 1971;53(6):771–781. [PubMed] [Google Scholar]
  21. Schleicher E., Wieland O. H. Kinetic analysis of glycation as a tool for assessing the half-life of proteins. Biochim Biophys Acta. 1986 Oct 29;884(1):199–205. doi: 10.1016/0304-4165(86)90244-8. [DOI] [PubMed] [Google Scholar]
  22. Shapiro R., McManus M. J., Zalut C., Bunn H. F. Sites of nonenzymatic glycosylation of human hemoglobin A. J Biol Chem. 1980 Apr 10;255(7):3120–3127. [PubMed] [Google Scholar]
  23. Snieder H., Sawtell P. A., Ross L., Walker J., Spector T. D., Leslie R. D. HbA(1c) levels are genetically determined even in type 1 diabetes: evidence from healthy and diabetic twins. Diabetes. 2001 Dec;50(12):2858–2863. doi: 10.2337/diabetes.50.12.2858. [DOI] [PubMed] [Google Scholar]
  24. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  25. Szwergold B. S., Howell S., Beisswenger P. J. Human fructosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes. 2001 Sep;50(9):2139–2147. doi: 10.2337/diabetes.50.9.2139. [DOI] [PubMed] [Google Scholar]
  26. Vlassara H., Bucala R., Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994 Feb;70(2):138–151. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES