Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 1;365(Pt 3):849–856. doi: 10.1042/BJ20020254

Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate.

Emiko Kasahara 1, Eisuke F Sato 1, Mami Miyoshi 1, Ryusei Konaka 1, Keiichi Hiramoto 1, Junzo Sasaki 1, Masaaki Tokuda 1, Yoshihisa Nakano 1, Masayasu Inoue 1
PMCID: PMC1222724  PMID: 11982482

Abstract

Phthalate esters have been used extensively as plasticizers of synthetic polymers. Recent studies have revealed that these esters induce atrophy of the testis, although its pathogenesis remains unknown. The present study describes the possible involvement of oxidative stress in the pathogenesis of atrophy of the rat testis induced by di(2-ethylhexyl)phthalate (DEHP). Biochemical and immunohistochemical analysis revealed that oral administration of DEHP increased the generation of reactive oxygen species, with concomitant decrease in the concentration of glutathione and ascorbic acid in the testis, and selectively induced apoptosis of spermatocytes, thereby causing atrophy of this organ. Oxidative stress was selectively induced in germ cells, but not in Sertoli cells, treated with mono(2-ethylhexyl)phthalate (MEHP), a hydrolysed metabolite of DEHP. Furthermore, MEHP selectively induced the release of cytochrome c from mitochondria of the testis. These results indicate that oxidative stress elicited by MEHP principally injured mitochondrial function and induced the release of cytochrome c, thereby inducing apoptosis of spermatocytes and causing atrophy of the testis.

Full Text

The Full Text of this article is available as a PDF (216.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
  2. Bauché F., Fouchard M. H., Jégou B. Antioxidant system in rat testicular cells. FEBS Lett. 1994 Aug 8;349(3):392–396. doi: 10.1016/0014-5793(94)00709-8. [DOI] [PubMed] [Google Scholar]
  3. Bauer M. K., Vogt M., Los M., Siegel J., Wesselborg S., Schulze-Osthoff K. Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J Biol Chem. 1998 Apr 3;273(14):8048–8055. doi: 10.1074/jbc.273.14.8048. [DOI] [PubMed] [Google Scholar]
  4. Bensoussan K., Morales C. R., Hermo L. Vitamin E deficiency causes incomplete spermatogenesis and affects the structural differentiation of epithelial cells of the epididymis in the rat. J Androl. 1998 May-Jun;19(3):266–288. [PubMed] [Google Scholar]
  5. Chan H., Bartos D. P., Owen-Schaub L. B. Activation-dependent transcriptional regulation of the human Fas promoter requires NF-kappaB p50-p65 recruitment. Mol Cell Biol. 1999 Mar;19(3):2098–2108. doi: 10.1128/mcb.19.3.2098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chinoy N. J., Mehta R. R., Seethalakshmi L., Sharma J. D., Chinoy M. R. Effects of vitamin C deficiency on physiology of male reproductive organs of guinea pigs. Int J Fertil. 1986 Jul-Aug;31(3):232–239. [PubMed] [Google Scholar]
  7. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  8. Flohé L., Günzler W. A. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–121. doi: 10.1016/s0076-6879(84)05015-1. [DOI] [PubMed] [Google Scholar]
  9. Fraga C. G., Motchnik P. A., Shigenaga M. K., Helbock H. J., Jacob R. A., Ames B. N. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11003–11006. doi: 10.1073/pnas.88.24.11003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gray T. J., Gangolli S. D. Aspects of the testicular toxicity of phthalate esters. Environ Health Perspect. 1986 Mar;65:229–235. doi: 10.1289/ehp.8665229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hasegawa M., Wilson G., Russell L. D., Meistrich M. L. Radiation-induced cell death in the mouse testis: relationship to apoptosis. Radiat Res. 1997 Apr;147(4):457–467. [PubMed] [Google Scholar]
  12. Hasmall S. C., James N. H., Macdonald N., Soames A. R., Roberts R. A. Species differences in response to diethylhexylphthalate: suppression of apoptosis, induction of DNA synthesis and peroxisome proliferator activated receptor alpha-mediated gene expression. Arch Toxicol. 2000 Apr;74(2):85–91. doi: 10.1007/s002040050657. [DOI] [PubMed] [Google Scholar]
  13. Imada I., Sato E. F., Miyamoto M., Ichimori Y., Minamiyama Y., Konaka R., Inoue M. Analysis of reactive oxygen species generated by neutrophils using a chemiluminescence probe L-012. Anal Biochem. 1999 Jun 15;271(1):53–58. doi: 10.1006/abio.1999.4107. [DOI] [PubMed] [Google Scholar]
  14. Inoue M. Metabolism and transport of amphipathic molecules in analbuminemic rats and human subjects. Hepatology. 1985 Sep-Oct;5(5):892–898. doi: 10.1002/hep.1840050531. [DOI] [PubMed] [Google Scholar]
  15. Inoue M., Nobukuni Y., Ando Y., Hirota M., Hirata E., Morino Y. Interorgan metabolism of glutathione as the defence mechanism against oxidative stress. Dev Toxicol Environ Sci. 1986;14:51–60. [PubMed] [Google Scholar]
  16. Iriyama K., Yoshiura M., Iwamoto T., Ozaki Y. Simultaneous determination of uric and ascorbic acids in human serum by reversed-phase high-performance liquid chromatography with electrochemical detection. Anal Biochem. 1984 Aug 15;141(1):238–243. doi: 10.1016/0003-2697(84)90451-2. [DOI] [PubMed] [Google Scholar]
  17. Ishihara M., Itoh M., Miyamoto K., Suna S., Takeuchi Y., Takenaka I., Jitsunari F. Spermatogenic disturbance induced by di-(2-ethylhexyl) phthalate is significantly prevented by treatment with antioxidant vitamins in the rat. Int J Androl. 2000 Apr;23(2):85–94. doi: 10.1046/j.1365-2605.2000.00212.x. [DOI] [PubMed] [Google Scholar]
  18. Kasibhatla S., Genestier L., Green D. R. Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappaB. J Biol Chem. 1999 Jan 8;274(2):987–992. doi: 10.1074/jbc.274.2.987. [DOI] [PubMed] [Google Scholar]
  19. Lee J., Richburg J. H., Shipp E. B., Meistrich M. L., Boekelheide K. The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis. Endocrinology. 1999 Feb;140(2):852–858. doi: 10.1210/endo.140.2.6479. [DOI] [PubMed] [Google Scholar]
  20. Lee J., Richburg J. H., Younkin S. C., Boekelheide K. The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology. 1997 May;138(5):2081–2088. doi: 10.1210/endo.138.5.5110. [DOI] [PubMed] [Google Scholar]
  21. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
  22. Lue Y. H., Hikim A. P., Swerdloff R. S., Im P., Taing K. S., Bui T., Leung A., Wang C. Single exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular testosterone on stage specificity. Endocrinology. 1999 Apr;140(4):1709–1717. doi: 10.1210/endo.140.4.6629. [DOI] [PubMed] [Google Scholar]
  23. Manojkumar V., Padmakumaran Nair K. G., Santhosh A., Deepadevi K. V., Arun P., Lakshmi L. R., Kurup P. A. Decrease in the concentration of vitamin E in blood and tissues caused by di(2-ethylhexyl) phthalate, a commonly used plasticizer in blood storage bags and medical tubing. Vox Sang. 1998;75(2):139–144. [PubMed] [Google Scholar]
  24. Nagao Y. Viability of meiotic prophase spermatocytes of rats is facilitated in primary culture of dispersed testicular cells on collagen gel by supplementing epinephrine or norepinephrine: evidence that meiotic prophase spermatocytes complete meiotic divisions in vitro. In Vitro Cell Dev Biol. 1989 Dec;25(12):1088–1098. doi: 10.1007/BF02621259. [DOI] [PubMed] [Google Scholar]
  25. Nair N., Kurup C. K. Effect of administration of diethylhexyl phthalate on the function and turnover of rat hepatic mitochondria. Biochim Biophys Acta. 1987 Sep 11;925(3):332–340. doi: 10.1016/0304-4165(87)90199-1. [DOI] [PubMed] [Google Scholar]
  26. O'Bryan M. K., Schlatt S., Phillips D. J., de Kretser D. M., Hedger M. P. Bacterial lipopolysaccharide-induced inflammation compromises testicular function at multiple levels in vivo. Endocrinology. 2000 Jan;141(1):238–246. doi: 10.1210/endo.141.1.7240. [DOI] [PubMed] [Google Scholar]
  27. Oishi S. Effects of co-administration of di(2-ethylhexyl)phthalate and testosterone on several parameters in the testis and pharmacokinetics of its mono-de-esterified metabolite. Arch Toxicol. 1989;63(4):289–295. doi: 10.1007/BF00278642. [DOI] [PubMed] [Google Scholar]
  28. Oishi S. Effects of phthalic acid esters on testicular mitochondrial functions in the rat. Arch Toxicol. 1990;64(2):143–147. doi: 10.1007/BF01974400. [DOI] [PubMed] [Google Scholar]
  29. Oishi S., Hiraga K. Effect of phthalic acid esters on gonadal function in male rats. Bull Environ Contam Toxicol. 1979 Jan;21(1-2):65–67. doi: 10.1007/BF01685387. [DOI] [PubMed] [Google Scholar]
  30. Oishi S. Testicular atrophy induced by di(2-ethylhexyl)phthalate: changes in histology, cell specific enzyme activities and zinc concentrations in rat testis. Arch Toxicol. 1986 Dec;59(4):290–295. doi: 10.1007/BF00290553. [DOI] [PubMed] [Google Scholar]
  31. Peakall D. B. Phthalate esters: Occurrence and biological effects. Residue Rev. 1975;54:1–41. doi: 10.1007/978-1-4612-9857-1_1. [DOI] [PubMed] [Google Scholar]
  32. Peck C. C., Odom D. G., Friedman H. I., Albro P. W., Hass J. R., Brady J. T., Jess D. A. Di-2-ethylhexyl phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) accumulation in whole blood and red cell concentrates. Transfusion. 1979 Mar-Apr;19(2):137–146. doi: 10.1046/j.1537-2995.1979.19279160282.x. [DOI] [PubMed] [Google Scholar]
  33. Pollack G. M., Li R. C., Ermer J. C., Shen D. D. Effects of route of administration and repetitive dosing on the disposition kinetics of di(2-ethylhexyl) phthalate and its mono-de-esterified metabolite in rats. Toxicol Appl Pharmacol. 1985 Jun 30;79(2):246–256. doi: 10.1016/0041-008x(85)90346-1. [DOI] [PubMed] [Google Scholar]
  34. Rao A. V., Shaha C. Role of glutathione S-transferases in oxidative stress-induced male germ cell apoptosis. Free Radic Biol Med. 2000 Nov 15;29(10):1015–1027. doi: 10.1016/s0891-5849(00)00408-1. [DOI] [PubMed] [Google Scholar]
  35. Richburg J. H., Boekelheide K. Mono-(2-ethylhexyl) phthalate rapidly alters both Sertoli cell vimentin filaments and germ cell apoptosis in young rat testes. Toxicol Appl Pharmacol. 1996 Mar;137(1):42–50. doi: 10.1006/taap.1996.0055. [DOI] [PubMed] [Google Scholar]
  36. Richburg J. H., Nañez A., Williams L. R., Embree M. E., Boekelheide K. Sensitivity of testicular germ cells to toxicant-induced apoptosis in gld mice that express a nonfunctional form of Fas ligand. Endocrinology. 2000 Feb;141(2):787–793. doi: 10.1210/endo.141.2.7325. [DOI] [PubMed] [Google Scholar]
  37. Richburg J. H. The relevance of spontaneous- and chemically-induced alterations in testicular germ cell apoptosis to toxicology. Toxicol Lett. 2000 Mar 15;112-113:79–86. doi: 10.1016/s0378-4274(99)00253-2. [DOI] [PubMed] [Google Scholar]
  38. Rusyn I., Kadiiska M. B., Dikalova A., Kono H., Yin M., Tsuchiya K., Mason R. P., Peters J. M., Gonzalez F. J., Segal B. H. Phthalates rapidly increase production of reactive oxygen species in vivo: role of Kupffer cells. Mol Pharmacol. 2001 Apr;59(4):744–750. doi: 10.1124/mol.59.4.744. [DOI] [PubMed] [Google Scholar]
  39. Santhosh A., Nair K. G., Arun P., Deepadevi K. V., Manojkumar V., Lakshmi L. R., Kurup P. A. Effect of DEHP [di-(2-ethyl hexyl) phthalate] on lipid peroxidation in liver in rats and in primary cultures of rat hepatocytes. Indian J Med Res. 1998 Jul;108:17–23. [PubMed] [Google Scholar]
  40. Sulimovici S., Bartoov B., Lunenfeld B. Localization of 3-beta hydroxysteroid dehydrogenase in the inner membrane subfraction of rat testis mitochondria. Biochim Biophys Acta. 1973 Sep 15;321(1):27–40. doi: 10.1016/0005-2744(73)90056-9. [DOI] [PubMed] [Google Scholar]
  41. Thomas J. A., Thomas M. J. Biological effects of di-(2-ethylhexyl) phthalate and other phthalic acid esters. Crit Rev Toxicol. 1984;13(4):283–317. doi: 10.3109/10408448409023761. [DOI] [PubMed] [Google Scholar]
  42. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  43. Turunen M., Peters J. M., Gonzalez F. J., Schedin S., Dallner G. Influence of peroxisome proliferator-activated receptor alpha on ubiquinone biosynthesis. J Mol Biol. 2000 Mar 31;297(3):607–614. doi: 10.1006/jmbi.2000.3596. [DOI] [PubMed] [Google Scholar]
  44. Yang Y., Cheng J. Z., Singhal S. S., Saini M., Pandya U., Awasthi S., Awasthi Y. C. Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J Biol Chem. 2001 Mar 7;276(22):19220–19230. doi: 10.1074/jbc.M100551200. [DOI] [PubMed] [Google Scholar]
  45. Yoganathan T., Eskild W., Hansson V. Investigation of detoxification capacity of rat testicular germ cells and Sertoli cells. Free Radic Biol Med. 1989;7(4):355–359. doi: 10.1016/0891-5849(89)90121-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES