Abstract
Lysophosphatidic acid (LPA) is a physiological agonist that is produced by lysophospholipase D, phospholipase A(1) and phospholipase A(2) in the blood of animals. It exerts diverse biological actions on a broad range of animal cells. Specific receptors for this important agonist have been characterized. In this investigation, for the first time we prepared LPAs having a highly unsaturated fatty acyl group, such as the eicosapentaenoyl or docosahexaenoyl residue, and their acetylated derivatives. Human platelets aggregated more potently in response to the highly unsaturated acyl-LPAs than to LPAs with a C(18) fatty acyl group, such as an oleoyl group, while alkyl ether-linked LPAs (alkyl-LPA) had much stronger aggregating activity. Two positional isomers of LPAs with an arachidonoyl, eicosapentaenoyl or docosahexaenoyl group had equipotent aggregatory activity as well as the positional isomers of their acetylated analogues, indicating that putative LPA receptors could not distinguish the difference between the positional isomers. We found that platelet preparations from two individuals showed no aggregatory response to alkyl-LPAs, although they contained mRNAs for known LPA receptors in the following order of expression level: endothelial differentiation gene (Edg)-4>Edg-7>Edg-2. We also obtained evidence that 2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid (ONO-RS-082), a phospholipase A(2) inhibitor, potentiated alkyl-LPA-induced platelet aggregation, but inhibited highly unsaturated acyl-LPA-induced platelet aggregation. These results indicated that human platelets express acyl-LPA-selective and alkyl-LPA-selective receptors on their plasma membrane.
Full Text
The Full Text of this article is available as a PDF (256.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Baker D. L., Desiderio D. M., Miller D. D., Tolley B., Tigyi G. J. Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal Biochem. 2001 May 15;292(2):287–295. doi: 10.1006/abio.2001.5063. [DOI] [PubMed] [Google Scholar]
- Bandoh K., Aoki J., Hosono H., Kobayashi S., Kobayashi T., Murakami-Murofushi K., Tsujimoto M., Arai H., Inoue K. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem. 1999 Sep 24;274(39):27776–27785. doi: 10.1074/jbc.274.39.27776. [DOI] [PubMed] [Google Scholar]
- Bandoh K., Aoki J., Taira A., Tsujimoto M., Arai H., Inoue K. Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett. 2000 Jul 28;478(1-2):159–165. doi: 10.1016/s0014-5793(00)01827-5. [DOI] [PubMed] [Google Scholar]
- Banga H. S., Simons E. R., Brass L. F., Rittenhouse S. E. Activation of phospholipases A and C in human platelets exposed to epinephrine: role of glycoproteins IIb/IIIa and dual role of epinephrine. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9197–9201. doi: 10.1073/pnas.83.23.9197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
- Chun J. Lysophospholipid receptors: implications for neural signaling. Crit Rev Neurobiol. 1999;13(2):151–168. doi: 10.1615/critrevneurobiol.v13.i2.20. [DOI] [PubMed] [Google Scholar]
- Croset M., Brossard N., Polette A., Lagarde M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J. 2000 Jan 1;345(Pt 1):61–67. [PMC free article] [PubMed] [Google Scholar]
- Das A. K., Hajra A. K. Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids. 1989 Apr;24(4):329–333. doi: 10.1007/BF02535172. [DOI] [PubMed] [Google Scholar]
- Eichholtz T., Jalink K., Fahrenfort I., Moolenaar W. H. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J. 1993 May 1;291(Pt 3):677–680. doi: 10.1042/bj2910677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekholm J., Tatsumi Y., Nouchi T., Hanahan D. J. The human platelet as a reproducible and sensitive cell for the detection and assay of platelet-activating factor. Anal Biochem. 1992 Jul;204(1):79–84. doi: 10.1016/0003-2697(92)90142-t. [DOI] [PubMed] [Google Scholar]
- Gaits F., Fourcade O., Le Balle F., Gueguen G., Gaigé B., Gassama-Diagne A., Fauvel J., Salles J. P., Mauco G., Simon M. F. Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis. FEBS Lett. 1997 Jun 23;410(1):54–58. doi: 10.1016/s0014-5793(97)00411-0. [DOI] [PubMed] [Google Scholar]
- Gerrard J. M., Kindom S. E., Peterson D. A., Peller J., Krantz K. E., White J. G. Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux. Am J Pathol. 1979 Aug;96(2):423–438. [PMC free article] [PubMed] [Google Scholar]
- Gerrard J. M., Robinson P. Identification of the molecular species of lysophosphatidic acid produced when platelets are stimulated by thrombin. Biochim Biophys Acta. 1989 Feb 20;1001(3):282–285. doi: 10.1016/0005-2760(89)90112-4. [DOI] [PubMed] [Google Scholar]
- Goetzl E. J., An S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 1998 Dec;12(15):1589–1598. [PubMed] [Google Scholar]
- Gueguen G., Gaigé B., Grévy J. M., Rogalle P., Bellan J., Wilson M., Klaébé A., Pont F., Simon M. F., Chap H. Structure-activity analysis of the effects of lysophosphatidic acid on platelet aggregation. Biochemistry. 1999 Jun 29;38(26):8440–8450. doi: 10.1021/bi9816756. [DOI] [PubMed] [Google Scholar]
- Hooks S. B., Ragan S. P., Hopper D. W., Hönemann C. W., Durieux M. E., Macdonald T. L., Lynch K. R. Characterization of a receptor subtype-selective lysophosphatidic acid mimetic. Mol Pharmacol. 1998 Feb;53(2):188–194. doi: 10.1124/mol.53.2.188. [DOI] [PubMed] [Google Scholar]
- Illingworth D. R., Portman O. W. The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeys. Biochem J. 1972 Nov;130(2):557–567. doi: 10.1042/bj1300557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jalink K., Hengeveld T., Mulder S., Postma F. R., Simon M. F., Chap H., van der Marel G. A., van Boom J. H., van Blitterswijk W. J., Moolenaar W. H. Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis. Biochem J. 1995 Apr 15;307(Pt 2):609–616. doi: 10.1042/bj3070609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jalink K., Hordijk P. L., Moolenaar W. H. Growth factor-like effects of lysophosphatidic acid, a novel lipid mediator. Biochim Biophys Acta. 1994 Dec 30;1198(2-3):185–196. doi: 10.1016/0304-419x(94)90013-2. [DOI] [PubMed] [Google Scholar]
- Kishimoto S., Shimadzu W., Izumi T., Shimizu T., Fukuda T., Makino S., Sugiura T., Waku K. Regulation by IL-5 of expression of functional platelet-activating factor receptors on human eosinophils. J Immunol. 1996 Nov 1;157(9):4126–4132. [PubMed] [Google Scholar]
- Li Y., Shiels A. J., Maszak G., Byron K. L. Vasopressin-stimulated Ca2+ spiking in vascular smooth muscle cells involves phospholipase D. Am J Physiol Heart Circ Physiol. 2001 Jun;280(6):H2658–H2664. doi: 10.1152/ajpheart.2001.280.6.H2658. [DOI] [PubMed] [Google Scholar]
- Liliom K., Bittman R., Swords B., Tigyi G. N-palmitoyl-serine and N-palmitoyl-tyrosine phosphoric acids are selective competitive antagonists of the lysophosphatidic acid receptors. Mol Pharmacol. 1996 Sep;50(3):616–623. [PubMed] [Google Scholar]
- Liliom K., Guan Z., Tseng J. L., Desiderio D. M., Tigyi G., Watsky M. A. Growth factor-like phospholipids generated after corneal injury. Am J Physiol. 1998 Apr;274(4 Pt 1):C1065–C1074. doi: 10.1152/ajpcell.1998.274.4.C1065. [DOI] [PubMed] [Google Scholar]
- Motohashi K., Shibata S., Ozaki Y., Yatomi Y., Igarashi Y. Identification of lysophospholipid receptors in human platelets: the relation of two agonists, lysophosphatidic acid and sphingosine 1-phosphate. FEBS Lett. 2000 Feb 25;468(2-3):189–193. doi: 10.1016/s0014-5793(00)01222-9. [DOI] [PubMed] [Google Scholar]
- Okuyama H., Kobayashi T., Watanabe S. Dietary fatty acids--the N-6/N-3 balance and chronic elderly diseases. Excess linoleic acid and relative N-3 deficiency syndrome seen in Japan. Prog Lipid Res. 1996 Dec;35(4):409–457. doi: 10.1016/s0163-7827(96)00012-4. [DOI] [PubMed] [Google Scholar]
- Plückthun A., Dennis E. A. Acyl and phosphoryl migration in lysophospholipids: importance in phospholipid synthesis and phospholipase specificity. Biochemistry. 1982 Apr 13;21(8):1743–1750. doi: 10.1021/bi00537a007. [DOI] [PubMed] [Google Scholar]
- Portman O. W., Illingworth D. R. Metabolism of lysolecithin in vivo and in vitro with particular emphasis on the arterial wall. Biochim Biophys Acta. 1974 Apr 26;348(1):136–144. doi: 10.1016/0005-2760(74)90099-x. [DOI] [PubMed] [Google Scholar]
- Rizza C., Leitinger N., Yue J., Fischer D. J., Wang D. A., Shih P. T., Lee H., Tigyi G., Berliner J. A. Lysophosphatidic acid as a regulator of endothelial/leukocyte interaction. Lab Invest. 1999 Oct;79(10):1227–1235. [PubMed] [Google Scholar]
- Satouchi K., Oda M., Yasunaga K., Saito K. Evidence for production of 1-acyl-2-acetyl-sn-glyceryl-3-phosphorylcholine concomitantly with platelet-activating factor. Biochem Biophys Res Commun. 1985 May 16;128(3):1409–1417. doi: 10.1016/0006-291x(85)91097-6. [DOI] [PubMed] [Google Scholar]
- Satouchi K., Sakaguchi M., Shirakawa M., Hirano K., Tanaka T. Lysophosphatidylcholine from white muscle of bonito Euthynnus pelamis (Linnaeus): involvement of phospholipase A1 activity for its production. Biochim Biophys Acta. 1994 Oct 6;1214(3):303–308. [PubMed] [Google Scholar]
- Savard J. D., Choy P. C. Phosphatidylcholine formation from exogenous lysophosphatidylcholine in isolated hamster heart. Biochim Biophys Acta. 1982 Apr 15;711(1):40–48. doi: 10.1016/0005-2760(82)90007-8. [DOI] [PubMed] [Google Scholar]
- Schulze C., Smales C., Rubin L. L., Staddon J. M. Lysophosphatidic acid increases tight junction permeability in cultured brain endothelial cells. J Neurochem. 1997 Mar;68(3):991–1000. doi: 10.1046/j.1471-4159.1997.68030991.x. [DOI] [PubMed] [Google Scholar]
- Schumacher K. A., Classen H. G., Späth M. Platelet aggregation evoked in vitro and in vivo by phosphatidic acids and lysoderivatives: identity with substances in aged serum (DAS). Thromb Haemost. 1979 Aug 31;42(2):631–640. [PubMed] [Google Scholar]
- Selinger Z., Lapidot Y. Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide. J Lipid Res. 1966 Jan;7(1):174–175. [PubMed] [Google Scholar]
- Shen Z., Wu M., Elson P., Kennedy A. W., Belinson J., Casey G., Xu Y. Fatty acid composition of lysophosphatidic acid and lysophosphatidylinositol in plasma from patients with ovarian cancer and other gynecological diseases. Gynecol Oncol. 2001 Oct;83(1):25–30. doi: 10.1006/gyno.2001.6357. [DOI] [PubMed] [Google Scholar]
- Siess W., Zangl K. J., Essler M., Bauer M., Brandl R., Corrinth C., Bittman R., Tigyi G., Aepfelbacher M. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6931–6936. doi: 10.1073/pnas.96.12.6931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon M. F., Chap H., Douste-Blazy L. Human platelet aggregation induced by 1-alkyl-lysophosphatidic acid and its analogs: a new group of phospholipid mediators? Biochem Biophys Res Commun. 1982 Oct 29;108(4):1743–1750. doi: 10.1016/s0006-291x(82)80113-7. [DOI] [PubMed] [Google Scholar]
- Spiegel S., Milstien S. Functions of a new family of sphingosine-1-phosphate receptors. Biochim Biophys Acta. 2000 Apr 12;1484(2-3):107–116. doi: 10.1016/s1388-1981(00)00010-x. [DOI] [PubMed] [Google Scholar]
- Sugiura T., Kodaka T., Nakane S., Miyashita T., Kondo S., Suhara Y., Takayama H., Waku K., Seki C., Baba N. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem. 1999 Jan 29;274(5):2794–2801. doi: 10.1074/jbc.274.5.2794. [DOI] [PubMed] [Google Scholar]
- Sugiura T., Nakane S., Kishimoto S., Waku K., Yoshioka Y., Tokumura A., Hanahan D. J. Occurrence of lysophosphatidic acid and its alkyl ether-linked analog in rat brain and comparison of their biological activities toward cultured neural cells. Biochim Biophys Acta. 1999 Sep 22;1440(2-3):194–204. doi: 10.1016/s1388-1981(99)00127-4. [DOI] [PubMed] [Google Scholar]
- Sugiura T., Tokumura A., Gregory L., Nouchi T., Weintraub S. T., Hanahan D. J. Biochemical characterization of the interaction of lipid phosphoric acids with human platelets: comparison with platelet activating factor. Arch Biochem Biophys. 1994 Jun;311(2):358–368. doi: 10.1006/abbi.1994.1249. [DOI] [PubMed] [Google Scholar]
- Thiés F., Delachambre M. C., Bentejac M., Lagarde M., Lecerf J. Unsaturated fatty acids esterified in 2-acyl-l-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J Neurochem. 1992 Sep;59(3):1110–1116. doi: 10.1111/j.1471-4159.1992.tb08353.x. [DOI] [PubMed] [Google Scholar]
- Thumser A. E., Voysey J. E., Wilton D. C. The binding of lysophospholipids to rat liver fatty acid-binding protein and albumin. Biochem J. 1994 Aug 1;301(Pt 3):801–806. doi: 10.1042/bj3010801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tigyi G., Miledi R. Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. J Biol Chem. 1992 Oct 25;267(30):21360–21367. [PubMed] [Google Scholar]
- Tokumura A. A family of phospholipid autacoids: occurrence, metabolism and bioactions. Prog Lipid Res. 1995;34(2):151–184. doi: 10.1016/0163-7827(95)00001-g. [DOI] [PubMed] [Google Scholar]
- Tokumura A., Fujimoto H., Yoshimoto O., Nishioka Y., Miyake M., Fukuzawa K. Production of lysophosphatidic acid by lysophospholipase D in incubated plasma of spontaneously hypertensive rats and Wistar Kyoto rats. Life Sci. 1999;65(3):245–253. doi: 10.1016/s0024-3205(99)00243-x. [DOI] [PubMed] [Google Scholar]
- Tokumura A., Fukuzawa K., Isobe J., Tsukatani H. Lysophosphatidic acid-induced aggregation of human and feline platelets: structure-activity relationship. Biochem Biophys Res Commun. 1981 Mar 31;99(2):391–398. doi: 10.1016/0006-291x(81)91758-7. [DOI] [PubMed] [Google Scholar]
- Tokumura A., Harada K., Fukuzawa K., Tsukatani H. Involvement of lysophospholipase D in the production of lysophosphatidic acid in rat plasma. Biochim Biophys Acta. 1986 Jan 3;875(1):31–38. [PubMed] [Google Scholar]
- Tokumura A., Harada K., Yoshioka Y., Tsukatani H., Handa Y. Analyses of lysophosphatidic acids by gas chromatography mass spectrometry without hydrolytic pretreatment. Biomed Mass Spectrom. 1984 Apr;11(4):167–171. doi: 10.1002/bms.1200110406. [DOI] [PubMed] [Google Scholar]
- Tokumura A., Iimori M., Nishioka Y., Kitahara M., Sakashita M., Tanaka S. Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. Am J Physiol. 1994 Jul;267(1 Pt 1):C204–C210. doi: 10.1152/ajpcell.1994.267.1.C204. [DOI] [PubMed] [Google Scholar]
- Tokumura A., Miyake M., Nishioka Y., Yamano S., Aono T., Fukuzawa K. Production of lysophosphatidic acids by lysophospholipase D in human follicular fluids of In vitro fertilization patients. Biol Reprod. 1999 Jul;61(1):195–199. doi: 10.1095/biolreprod61.1.195. [DOI] [PubMed] [Google Scholar]
- Tokumura A., Nishioka Y., Yoshimoto O., Shinomiya J., Fukuzawa K. Substrate specificity of lysophospholipase D which produces bioactive lysophosphatidic acids in rat plasma. Biochim Biophys Acta. 1999 Feb 25;1437(2):235–245. doi: 10.1016/s1388-1981(99)00011-6. [DOI] [PubMed] [Google Scholar]
- Tokumura A., Yoshida J., Maruyama T., Fukuzawa K., Tsukatani H. Platelet aggregation induced by ether-linked phospholipids. 1. Inhibitory actions of bovine serum albumin and structural analogues of platelet activating factor. Thromb Res. 1987 Apr 1;46(1):51–63. doi: 10.1016/0049-3848(87)90206-4. [DOI] [PubMed] [Google Scholar]
- Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao Y. J., Schwartz B., Washington M., Kennedy A., Webster K., Belinson J., Xu Y. Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal Biochem. 2001 Mar;290(2):302–313. doi: 10.1006/abio.2001.5000. [DOI] [PubMed] [Google Scholar]