Abstract
Copper amine oxidases are homodimeric enzymes containing one Cu(2+) ion and one 2,4,5-trihydroxyphenylalanine quinone (TPQ) per monomer. Previous studies with the copper amine oxidase from Escherichia coli (ECAO) have elucidated the structure of the active site and established the importance in catalysis of an active-site base, Asp-383. To explore the early interactions of substrate with enzyme, we have used tranylcypromine (TCP), a fully reversible competitive inhibitor, with wild-type ECAO and with the active-site base variants D383E and D383N. The formation of an adduct, analogous to the substrate Schiff base, between TCP and the TPQ cofactor in the active site of wild-type ECAO and in the D383E and D383N variants has been investigated over the pH range 5.5-9.4. For the wild-type enzyme, the plot of the binding constant for adduct formation (K(b)) against pH is bell-shaped, indicating two pK(a)s of 5.8 and approximately 8, consistent with the preferred reaction partners being the unprotonated active-site base and the protonated TCP. For the D383N variant, the reaction pathway involving unprotonated base and protonated TCP cannot occur, and binding must follow a less favoured pathway with unprotonated TCP as reactant. Surprisingly, for the D383E variant, the K(b) versus pH behaviour is qualitatively similar to that of D383N, supporting a reaction pathway involving unprotonated TCP. The TCP binding data are consistent with substrate binding data for the wild type and the D383E variant using steady-state kinetics. The results provide strong support for a protonated amine being the preferred substrate for the wild-type enzyme, and emphasize the importance of the active-site base, Asp-383, in the primary binding event.
Full Text
The Full Text of this article is available as a PDF (179.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anthony C. Quinoprotein-catalysed reactions. Biochem J. 1996 Dec 15;320(Pt 3):697–711. doi: 10.1042/bj3200697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collison D., Knowles P. F., Mabbs F. E., Rius F. X., Singh I., Dooley D. M., Cote C. E., McGuirl M. Studies on the active site of pig plasma amine oxidase. Biochem J. 1989 Dec 15;264(3):663–669. doi: 10.1042/bj2640663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper R. A., Knowles P. F., Brown D. E., McGuirl M. A., Dooley D. M. Evidence for copper and 3,4,6-trihydroxyphenylalanine quinone cofactors in an amine oxidase from the gram-negative bacterium Escherichia coli K-12. Biochem J. 1992 Dec 1;288(Pt 2):337–340. doi: 10.1042/bj2880337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Biase D., Agostinelli E., De Matteis G., Mondovì B., Morpurgo L. Half-of-the-sites reactivity of bovine serum amine oxidase. Reactivity and chemical identity of the second site. Eur J Biochem. 1996 Apr 1;237(1):93–99. doi: 10.1111/j.1432-1033.1996.0093n.x. [DOI] [PubMed] [Google Scholar]
- Farnum M., Palcic M., Klinman J. P. pH dependence of deuterium isotope effects and tritium exchange in the bovine plasma amine oxidase reaction: a role for single-base catalysis in amine oxidation and imine exchange. Biochemistry. 1986 Apr 22;25(8):1898–1904. doi: 10.1021/bi00356a010. [DOI] [PubMed] [Google Scholar]
- Hartmann C., Brzovic P., Klinman J. P. Spectroscopic detection of chemical intermediates in the reaction of para-substituted benzylamines with bovine serum amine oxidase. Biochemistry. 1993 Mar 9;32(9):2234–2241. doi: 10.1021/bi00060a015. [DOI] [PubMed] [Google Scholar]
- Hartmann C., Klinman J. P. Reductive trapping of substrate to bovine plasma amine oxidase. J Biol Chem. 1987 Jan 25;262(3):962–965. [PubMed] [Google Scholar]
- Hartmann C., Klinman J. P. Structure-function studies of substrate oxidation by bovine serum amine oxidase: relationship to cofactor structure and mechanism. Biochemistry. 1991 May 7;30(18):4605–4611. doi: 10.1021/bi00232a035. [DOI] [PubMed] [Google Scholar]
- Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A. L., Klinman J. P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science. 1990 May 25;248(4958):981–987. doi: 10.1126/science.2111581. [DOI] [PubMed] [Google Scholar]
- Klinman J. P., Mu D. Quinoenzymes in biology. Annu Rev Biochem. 1994;63:299–344. doi: 10.1146/annurev.bi.63.070194.001503. [DOI] [PubMed] [Google Scholar]
- Klinman Judith P. Mechanisms Whereby Mononuclear Copper Proteins Functionalize Organic Substrates. Chem Rev. 1996 Nov 7;96(7):2541–2562. doi: 10.1021/cr950047g. [DOI] [PubMed] [Google Scholar]
- Kumar V., Dooley D. M., Freeman H. C., Guss J. M., Harvey I., McGuirl M. A., Wilce M. C., Zubak V. M. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution. Structure. 1996 Aug 15;4(8):943–955. doi: 10.1016/s0969-2126(96)00101-3. [DOI] [PubMed] [Google Scholar]
- Li R., Klinman J. P., Mathews F. S. Copper amine oxidase from Hansenula polymorpha: the crystal structure determined at 2.4 A resolution reveals the active conformation. Structure. 1998 Mar 15;6(3):293–307. doi: 10.1016/s0969-2126(98)00033-1. [DOI] [PubMed] [Google Scholar]
- Lindström A., Pettersson G. Active-site titration of pig-plasma benzylamine oxidase. Eur J Biochem. 1978 Feb 1;83(1):131–135. doi: 10.1111/j.1432-1033.1978.tb12076.x. [DOI] [PubMed] [Google Scholar]
- Mallinger A. G., Himmelhoch J. M., Thase M. E., Edwards D. J., Knopf S. Plasma tranylcypromine: relationship to pharmacokinetic variables and clinical antidepressant actions. J Clin Psychopharmacol. 1990 Jun;10(3):176–183. [PubMed] [Google Scholar]
- McGuirl M. A., Dooley D. M. Copper-containing oxidases. Curr Opin Chem Biol. 1999 Apr;3(2):138–144. doi: 10.1016/S1367-5931(99)80025-8. [DOI] [PubMed] [Google Scholar]
- McGuirl M. A., McCahon C. D., McKeown K. A., Dooley D. M. Purification and characterization of pea seedling amine oxidase for crystallization studies. Plant Physiol. 1994 Nov;106(3):1205–1211. doi: 10.1104/pp.106.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mu D., Janes S. M., Smith A. J., Brown D. E., Dooley D. M., Klinman J. P. Tyrosine codon corresponds to topa quinone at the active site of copper amine oxidases. J Biol Chem. 1992 Apr 25;267(12):7979–7982. [PubMed] [Google Scholar]
- Murray J. M., Kurtis C. R., Tambyrajah W., Saysell C. G., Wilmot C. M., Parsons M. R., Phillips S. E., Knowles P. F., McPherson M. J. Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential. Biochemistry. 2001 Oct 30;40(43):12808–12818. doi: 10.1021/bi011187p. [DOI] [PubMed] [Google Scholar]
- Parsons M. R., Convery M. A., Wilmot C. M., Yadav K. D., Blakeley V., Corner A. S., Phillips S. E., McPherson M. J., Knowles P. F. Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure. 1995 Nov 15;3(11):1171–1184. doi: 10.1016/s0969-2126(01)00253-2. [DOI] [PubMed] [Google Scholar]
- Plastino J., Green E. L., Sanders-Loehr J., Klinman J. P. An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha. Biochemistry. 1999 Jun 29;38(26):8204–8216. doi: 10.1021/bi9826660. [DOI] [PubMed] [Google Scholar]
- Roh J. H., Suzuki H., Azakami H., Yamashita M., Murooka Y., Kumagai H. Purification, characterization, and crystallization of monoamine oxidase from Escherichia coli K-12. Biosci Biotechnol Biochem. 1994 Sep;58(9):1652–1656. doi: 10.1271/bbb.58.1652. [DOI] [PubMed] [Google Scholar]
- Tanizawa K. Biogenesis of novel quinone coenzymes. J Biochem. 1995 Oct;118(4):671–678. doi: 10.1093/oxfordjournals.jbchem.a124962. [DOI] [PubMed] [Google Scholar]
- Wilce M. C., Dooley D. M., Freeman H. C., Guss J. M., Matsunami H., McIntire W. S., Ruggiero C. E., Tanizawa K., Yamaguchi H. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry. 1997 Dec 23;36(51):16116–16133. doi: 10.1021/bi971797i. [DOI] [PubMed] [Google Scholar]
- Wilmot C. M., Murray J. M., Alton G., Parsons M. R., Convery M. A., Blakeley V., Corner A. S., Palcic M. M., Knowles P. F., McPherson M. J. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction. Biochemistry. 1997 Feb 18;36(7):1608–1620. doi: 10.1021/bi962205j. [DOI] [PubMed] [Google Scholar]