Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 1;365(Pt 3):841–848. doi: 10.1042/BJ20020290

Thermal denaturation of influenza virus and its relationship to membrane fusion.

Richard M Epand 1, Raquel F Epand 1
PMCID: PMC1222734  PMID: 11994048

Abstract

The X-31 strain of influenza virus was studied by differential scanning calorimetry (DSC), CD and SDS/PAGE analysis as a function of both temperature and pH. A bromelain-treated virus was also studied by these methods. The major transition observed in the intact virus was a result of the denaturation of the haemagglutinin (HA) protein. At pH 7.4, this transition was similar in the intact virus and the isolated HA, but was absent in the bromelain-treated virus. However, at pH 5 the denaturation temperature and enthalpy were both higher for HA in the virus than in the isolated protein, indicating that HA interacts with other molecular components in the intact virus. The transition observed by DSC occurs at a higher temperature than does the thermal transition observed by CD. The temperature of the CD transition coincides with the temperature at which the fusogenicity of the virus increases, and probably corresponds to the formation of an extended coiled-coil conformation. Analysis by SDS/PAGE at neutral pH under non-reducing conditions demonstrates a selective loss of the HA protein trimer, resulting in the formation of aggregates in the range of temperatures of 55 to 70 degrees C. In contrast, at acidic pH, the HA protein is largely in the monomeric form at 25 degrees C, and there is little change with temperature. There is thus a weakening of the quaternary structure of HA at acidic pH prior to heating. At the temperature at which the virus exhibits an increased fusogenicity at neutral pH, there is a loss of secondary structure and a beginning of a destabilization of the trimeric form of HA. This temperature is lower than that required for the major endothermic peak observed in DSC experiments. The results demonstrate that there is no kinetically trapped high-energy form of HA at neutral pH.

Full Text

The Full Text of this article is available as a PDF (196.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert A. D., Boesze-Battaglia K., Paw Z., Watts A., Epand R. M. Effect of cholesterol on rhodopsin stability in disk membranes. Biochim Biophys Acta. 1996 Sep 13;1297(1):77–82. doi: 10.1016/0167-4838(96)00102-1. [DOI] [PubMed] [Google Scholar]
  2. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 Sep 1;371(6492):37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
  3. Carr C. M., Chaudhry C., Kim P. S. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14306–14313. doi: 10.1073/pnas.94.26.14306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993 May 21;73(4):823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
  5. Chen J., Skehel J. J., Wiley D. C. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8967–8972. doi: 10.1073/pnas.96.16.8967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Compans R. W., Klenk H. D., Caliguiri L. A., Choppin P. W. Influenza virus proteins. I. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology. 1970 Dec;42(4):880–889. doi: 10.1016/0042-6822(70)90337-5. [DOI] [PubMed] [Google Scholar]
  7. De Flora S., Badolati G. Thermal inactivation of untreated and gamma-irradiated A2-Aichi-2-68 influenza virus. J Gen Virol. 1973 Aug;20(2):261–265. doi: 10.1099/0022-1317-20-2-261. [DOI] [PubMed] [Google Scholar]
  8. Epand R. F., Epand R. M., Jung C. Y. Glucose-induced thermal stabilization of the native conformation of GLUT 1. Biochemistry. 1999 Jan 5;38(1):454–458. doi: 10.1021/bi981893z. [DOI] [PubMed] [Google Scholar]
  9. Epand R. F., Macosko J. C., Russell C. J., Shin Y. K., Epand R. M. The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion. J Mol Biol. 1999 Feb 19;286(2):489–503. doi: 10.1006/jmbi.1998.2500. [DOI] [PubMed] [Google Scholar]
  10. Godley L., Pfeifer J., Steinhauer D., Ely B., Shaw G., Kaufmann R., Suchanek E., Pabo C., Skehel J. J., Wiley D. C. Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell. 1992 Feb 21;68(4):635–645. doi: 10.1016/0092-8674(92)90140-8. [DOI] [PubMed] [Google Scholar]
  11. Huang Qiang, Opitz Robert, Knapp Ernst-Walter, Herrmann Andreas. Protonation and stability of the globular domain of influenza virus hemagglutinin. Biophys J. 2002 Feb;82(2):1050–1058. doi: 10.1016/S0006-3495(02)75464-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jackson M. B., Sturtevant J. M. Phase transitions of the purple membranes of Halobacterium halobium. Biochemistry. 1978 Mar 7;17(5):911–915. doi: 10.1021/bi00598a026. [DOI] [PubMed] [Google Scholar]
  13. Jelesarov I., Lu M. Thermodynamics of trimer-of-hairpins formation by the SIV gp41 envelope protein. J Mol Biol. 2001 Mar 23;307(2):637–656. doi: 10.1006/jmbi.2001.4469. [DOI] [PubMed] [Google Scholar]
  14. Jin H., Leser G. P., Zhang J., Lamb R. A. Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J. 1997 Mar 17;16(6):1236–1247. doi: 10.1093/emboj/16.6.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Khan S. M., Bolen W., Hargrave P. A., Santoro M. M., McDowell J. H. Differential scanning calorimetry of bovine rhodopsin in rod-outer-segment disk membranes. Eur J Biochem. 1991 Aug 15;200(1):53–59. doi: 10.1111/j.1432-1033.1991.tb21047.x. [DOI] [PubMed] [Google Scholar]
  16. Korte T., Ludwig K., Krumbiegel M., Zirwer D., Damaschun G., Herrmann A. Transient changes of the conformation of hemagglutinin of influenza virus at low pH detected by time-resolved circular dichroism spectroscopy. J Biol Chem. 1997 Apr 11;272(15):9764–9770. doi: 10.1074/jbc.272.15.9764. [DOI] [PubMed] [Google Scholar]
  17. Leikina E., LeDuc D. L., Macosko J. C., Epand R., Epand R., Shin Y. K., Chernomordik L. V. The 1-127 HA2 construct of influenza virus hemagglutinin induces cell-cell hemifusion. Biochemistry. 2001 Jul 27;40(28):8378–8386. doi: 10.1021/bi010466+. [DOI] [PubMed] [Google Scholar]
  18. Lepock J. R., Rodahl A. M., Zhang C., Heynen M. L., Waters B., Cheng K. H. Thermal denaturation of the Ca2(+)-ATPase of sarcoplasmic reticulum reveals two thermodynamically independent domains. Biochemistry. 1990 Jan 23;29(3):681–689. doi: 10.1021/bi00455a013. [DOI] [PubMed] [Google Scholar]
  19. Lysko K. A., Carlson R., Taverna R., Snow J., Brandts J. F. Protein involvement in structural transition of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry. 1981 Sep 15;20(19):5570–5576. doi: 10.1021/bi00522a034. [DOI] [PubMed] [Google Scholar]
  20. Markovic I., Leikina E., Zhukovsky M., Zimmerberg J., Chernomordik L. V. Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines. J Cell Biol. 2001 Nov 26;155(5):833–844. doi: 10.1083/jcb.200103005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murphy K. P., Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43:313–361. doi: 10.1016/s0065-3233(08)60556-2. [DOI] [PubMed] [Google Scholar]
  22. Oxford J. S., Corcoran T., Hugentobler A. L. Quantitative analysis of the protein composition of influenza A and B viruses using high resolution SDS polyacrylamide gels. J Biol Stand. 1981 Oct;9(4):483–491. doi: 10.1016/s0092-1157(81)80041-8. [DOI] [PubMed] [Google Scholar]
  23. Puri A., Booy F. P., Doms R. W., White J. M., Blumenthal R. Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment. J Virol. 1990 Aug;64(8):3824–3832. doi: 10.1128/jvi.64.8.3824-3832.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Remeta David P., Krumbiegel Mathias, Minetti Conceiço A. S. A., Puri Anu, Ginsburg Ann, Blumenthal Robert. Acid-induced changes in thermal stability and fusion activity of influenza hemagglutinin. Biochemistry. 2002 Feb 12;41(6):2044–2054. doi: 10.1021/bi015614a. [DOI] [PubMed] [Google Scholar]
  25. Ruigrok R. W., Krijgsman P. C., de Ronde-Verloop F. M., de Jong J. C. Natural heterogeneity of shape, infectivity and protein composition in an influenza A (H3N2) virus preparation. Virus Res. 1985 Jul;3(1):69–76. doi: 10.1016/0168-1702(85)90042-5. [DOI] [PubMed] [Google Scholar]
  26. Ruigrok R. W., Martin S. R., Wharton S. A., Skehel J. J., Bayley P. M., Wiley D. C. Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology. 1986 Dec;155(2):484–497. doi: 10.1016/0042-6822(86)90210-2. [DOI] [PubMed] [Google Scholar]
  27. Sahasrabudhe A., Lawrence L., Epa V. C., Varghese J. N., Colman P. M., McKimm-Breschkin J. L. Substrate, inhibitor, or antibody stabilizes the Glu 119 Gly mutant influenza virus neuraminidase. Virology. 1998 Jul 20;247(1):14–21. doi: 10.1006/viro.1998.9222. [DOI] [PubMed] [Google Scholar]
  28. Sato S. B., Kawasaki K., Ohnishi S. Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3153–3157. doi: 10.1073/pnas.80.11.3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sauter N. K., Bednarski M. D., Wurzburg B. A., Hanson J. E., Whitesides G. M., Skehel J. J., Wiley D. C. Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. Biochemistry. 1989 Oct 17;28(21):8388–8396. doi: 10.1021/bi00447a018. [DOI] [PubMed] [Google Scholar]
  30. Sauter N. K., Hanson J. E., Glick G. D., Brown J. H., Crowther R. L., Park S. J., Skehel J. J., Wiley D. C. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry. 1992 Oct 13;31(40):9609–9621. doi: 10.1021/bi00155a013. [DOI] [PubMed] [Google Scholar]
  31. Scholtissek C. Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine. 1985 Sep;3(3 Suppl):215–218. doi: 10.1016/0264-410x(85)90109-4. [DOI] [PubMed] [Google Scholar]
  32. Wharton S. A., Ruigrok R. W., Martin S. R., Skehel J. J., Bayley P. M., Weis W., Wiley D. C. Conformational aspects of the acid-induced fusion mechanism of influenza virus hemagglutinin. Circular dichroism and fluorescence studies. J Biol Chem. 1988 Mar 25;263(9):4474–4480. [PubMed] [Google Scholar]
  33. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  34. Wrigley N. G., Skehel J. J., Charlwood P. A., Brand C. M. The size and shape of influenza virus neuraminidase. Virology. 1973 Feb;51(2):525–529. doi: 10.1016/0042-6822(73)90457-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES