Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):121–127. doi: 10.1042/BJ20011597

Biochemical adaptations of two sugar kinases from the hyperthermophilic archaeon Pyrococcus furiosus.

Corné H Verhees 1, Denise G M Koot 1, Thijs J G Ettema 1, Cor Dijkema 1, Willem M de Vos 1, John van der Oost 1
PMCID: PMC1222741  PMID: 11978175

Abstract

The hyperthermophilic archaeon Pyrococcus furiosus possesses a modified Embden-Meyerhof pathway, including an unusual ADP-dependent glucokinase (ADP-GLK) and an ADP-dependent phosphofructokinase. In the present study, we report the characterization of a P. furiosus galactokinase (GALK) and its comparison with the P. furiosus ADP-GLK. The pyrococcal genes encoding the ADP-GLK and GALK were functionally expressed in Escherichia coli, and the proteins were subsequently purified to homogeneity. Both enzymes are specific kinases with an optimal activity at approx. 90 degrees C. Biochemical characterization of these enzymes confirmed that the ADP-GLK is unable to use ATP as the phosphoryl group donor, but revealed that GALK is ATP-dependent and has an extremely high affinity for ATP. There is a discussion about whether the unusual features of these two classes of kinases might reflect adaptations to a relatively low intracellular ATP concentration in the hyperthermophilic archaeon P. furiosus.

Full Text

The Full Text of this article is available as a PDF (304.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aleshin A. E., Zeng C., Bartunik H. D., Fromm H. J., Honzatko R. B. Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate. J Mol Biol. 1998 Sep 18;282(2):345–357. doi: 10.1006/jmbi.1998.2017. [DOI] [PubMed] [Google Scholar]
  2. Blume K. G., Beutler E. Purification and properties of galactokinase from human red blood cells. J Biol Chem. 1971 Nov;246(21):6507–6510. [PubMed] [Google Scholar]
  3. Bork P., Sander C., Valencia A. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci. 1993 Jan;2(1):31–40. doi: 10.1002/pro.5560020104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Dey P. M. Galactokinase of Vicia faba seeds. Eur J Biochem. 1983 Oct 17;136(1):155–159. doi: 10.1111/j.1432-1033.1983.tb07720.x. [DOI] [PubMed] [Google Scholar]
  6. Driskill L. E., Kusy K., Bauer M. W., Kelly R. M. Relationship between glycosyl hydrolase inventory and growth physiology of the hyperthermophile Pyrococcus furiosus on carbohydrate-based media. Appl Environ Microbiol. 1999 Mar;65(3):893–897. doi: 10.1128/aem.65.3.893-897.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ettema T., van der Oost J., Huynen M. Modularity in the gain and loss of genes: applications for function prediction. Trends Genet. 2001 Sep;17(9):485–487. doi: 10.1016/s0168-9525(01)02384-8. [DOI] [PubMed] [Google Scholar]
  8. Frey P. A. The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 1996 Mar;10(4):461–470. [PubMed] [Google Scholar]
  9. Hickey M. W., Hillier A. J., Jago G. R. Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli. Appl Environ Microbiol. 1986 Apr;51(4):825–831. doi: 10.1128/aem.51.4.825-831.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ito S., Fushinobu S., Yoshioka I., Koga S., Matsuzawa H., Wakagi T. Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon. Structure. 2001 Mar 7;9(3):205–214. doi: 10.1016/s0969-2126(01)00577-9. [DOI] [PubMed] [Google Scholar]
  11. Kengen S. W., Luesink E. J., Stams A. J., Zehnder A. J. Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem. 1993 Apr 1;213(1):305–312. doi: 10.1111/j.1432-1033.1993.tb17763.x. [DOI] [PubMed] [Google Scholar]
  12. Kengen S. W., Tuininga J. E., de Bok F. A., Stams A. J., de Vos W. M. Purification and characterization of a novel ADP-dependent glucokinase from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem. 1995 Dec 22;270(51):30453–30457. doi: 10.1074/jbc.270.51.30453. [DOI] [PubMed] [Google Scholar]
  13. Kengen S. W., de Bok F. A., van Loo N. D., Dijkema C., Stams A. J., de Vos W. M. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J Biol Chem. 1994 Jul 1;269(26):17537–17541. [PubMed] [Google Scholar]
  14. Koga S., Yoshioka I., Sakuraba H., Takahashi M., Sakasegawa S., Shimizu S., Ohshima T. Biochemical characterization, cloning, and sequencing of ADP-dependent (AMP-forming) glucokinase from two hyperthermophilic archaea, Pyrococcus furiosus and Thermococcus litoralis. J Biochem. 2000 Dec;128(6):1079–1085. doi: 10.1093/oxfordjournals.jbchem.a022836. [DOI] [PubMed] [Google Scholar]
  15. Koga Y., Morikawa M., Haruki M., Nakamura H., Imanaka T., Kanaya S. Thermostable glycerol kinase from a hyperthermophilic archaeon: gene cloning and characterization of the recombinant enzyme. Protein Eng. 1998 Dec;11(12):1219–1227. doi: 10.1093/protein/11.12.1219. [DOI] [PubMed] [Google Scholar]
  16. Kulaev I. S., Vagabov V. M. Polyphosphate metabolism in micro-organisms. Adv Microb Physiol. 1983;24:83–171. doi: 10.1016/s0065-2911(08)60385-9. [DOI] [PubMed] [Google Scholar]
  17. Lavine J. E., Cantlay E., Roberts C. T., Jr, Morse D. E. Purification and properties of galactokinase from Tetrahymena thermophila. Biochim Biophys Acta. 1982 Jul 16;717(1):76–85. doi: 10.1016/0304-4165(82)90382-8. [DOI] [PubMed] [Google Scholar]
  18. Maitra P. K. A glucokinase from Saccharomyces cerevisiae. J Biol Chem. 1970 May 10;245(9):2423–2431. [PubMed] [Google Scholar]
  19. Mertens E. Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett. 1991 Jul 8;285(1):1–5. doi: 10.1016/0014-5793(91)80711-b. [DOI] [PubMed] [Google Scholar]
  20. Meyer D., Schneider-Fresenius C., Horlacher R., Peist R., Boos W. Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol. 1997 Feb;179(4):1298–1306. doi: 10.1128/jb.179.4.1298-1306.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Postma P. W., Lengeler J. W. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol Rev. 1985 Sep;49(3):232–269. doi: 10.1128/mr.49.3.232-269.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rypniewski W. R., Evans P. R. Crystal structure of unliganded phosphofructokinase from Escherichia coli. J Mol Biol. 1989 Jun 20;207(4):805–821. doi: 10.1016/0022-2836(89)90246-5. [DOI] [PubMed] [Google Scholar]
  23. SHERMAN J. R., ADLER J. Galactokinse from Escherichia coli. J Biol Chem. 1963 Mar;238:873–878. [PubMed] [Google Scholar]
  24. Schell M. A., Wilson D. B. Purification and properties of galactokinase from Saccharomyces cerevisiae. J Biol Chem. 1977 Feb 25;252(4):1162–1166. [PubMed] [Google Scholar]
  25. Selig M., Xavier K. B., Santos H., Schönheit P. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol. 1997 Apr;167(4):217–232. doi: 10.1007/BF03356097. [DOI] [PubMed] [Google Scholar]
  26. Sigrell J. A., Cameron A. D., Jones T. A., Mowbray S. L. Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 A resolution: insights into a new family of kinase structures. Structure. 1998 Feb 15;6(2):183–193. doi: 10.1016/s0969-2126(98)00020-3. [DOI] [PubMed] [Google Scholar]
  27. Tsay Y. H., Robinson G. W. Cloning and characterization of ERG8, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase. Mol Cell Biol. 1991 Feb;11(2):620–631. doi: 10.1128/mcb.11.2.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tuininga J. E., Verhees C. H., van der Oost J., Kengen S. W., Stams A. J., de Vos W. M. Molecular and biochemical characterization of the ADP-dependent phosphofructokinase from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem. 1999 Jul 23;274(30):21023–21028. doi: 10.1074/jbc.274.30.21023. [DOI] [PubMed] [Google Scholar]
  29. Verhees C. H., Tuininga J. E., Kengen S. W., Stams A. J., van der Oost J., de Vos W. M. ADP-dependent phosphofructokinases in mesophilic and thermophilic methanogenic archaea. J Bacteriol. 2001 Dec;183(24):7145–7153. doi: 10.1128/JB.183.24.7145-7153.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zeng C., Aleshin A. E., Chen G., Honzatko R. B., Fromm H. J. The roles of glycine residues in the ATP binding site of human brain hexokinase. J Biol Chem. 1998 Jan 9;273(2):700–704. doi: 10.1074/jbc.273.2.700. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES