Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):129–136. doi: 10.1042/BJ20020301

Interaction between the individual isoenzymes of pyruvate dehydrogenase kinase and the inner lipoyl-bearing domain of transacetylase component of pyruvate dehydrogenase complex.

Alina Tuganova 1, Igor Boulatnikov 1, Kirill M Popov 1
PMCID: PMC1222743  PMID: 11978179

Abstract

Protein-protein interactions play an important role in the regulation of enzymic activity of pyruvate dehydrogenase kinase (PDK). It is generally believed that the binding of PDK to the inner lipoyl-bearing domain L2 of the transacetylase component E2 of pyruvate dehydrogenase complex largely determines the level of kinase activity. In the present study, we characterized the interaction between the individual isoenzymes of PDK (PDK1-PDK4) and monomeric L2 domain of human E2, as well as the effect of this interaction on kinase activity. It was found that PDK isoenzymes are markedly different with respect to their affinities for L2. PDK3 demonstrated a very tight binding, which persisted during isolation of PDK3-L2 complexes using size-exclusion chromatography. Binding of PDK1 and PDK2 was readily reversible with the apparent dissociation constant of approx. 10 microM for both isoenzymes. PDK4 had a greatly reduced capacity for L2 binding (relative order PDK3>PDK1=PDK2>PDK4). Monomeric L2 domain alone had very little effect on the activities of either PDK1 or PDK2. In contrast, L2 caused a 3-fold increase in PDK3 activity and approx. 37% increase in PDK4 activity. These results strongly suggest that the interactions between the individual isoenzymes of PDK and L2 domain are isoenzyme-specific and might be among the major factors that determine the level of kinase activity of particular isoenzyme towards the pyruvate dehydrogenase complex.

Full Text

The Full Text of this article is available as a PDF (237.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. C., Yan X., Peng T., Kasten S., Roche T. E. Marked differences between two isoforms of human pyruvate dehydrogenase kinase. J Biol Chem. 2000 May 26;275(21):15773–15781. doi: 10.1074/jbc.M909488199. [DOI] [PubMed] [Google Scholar]
  2. Bowker-Kinley M. M., Davis W. I., Wu P., Harris R. A., Popov K. M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998 Jan 1;329(Pt 1):191–196. doi: 10.1042/bj3290191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cate R. L., Roche T. E. A unifying mechanism for stimulation of mammalian pyruvate dehydrogenase(a) kinase by reduced nicotinamide adenine dinucleotide, dihydrolipoamide, acetyl coenzyme A, or pyruvate. J Biol Chem. 1978 Jan 25;253(2):496–503. [PubMed] [Google Scholar]
  4. Cooper R. H., Randle P. J., Denton R. M. Stimulation of phosphorylation and inactivation of pyruvate dehydrogenase by physiological inhibitors of the pyruvate dehydrogenase reaction. Nature. 1975 Oct 30;257(5529):808–809. doi: 10.1038/257808a0. [DOI] [PubMed] [Google Scholar]
  5. Davis P. F., Pettit F. H., Reed L. J. Peptides derived from pyruvate dehydrogenase as substrates for pyruvate dehydrogenase kinase and phosphatase. Biochem Biophys Res Commun. 1977 Apr 11;75(3):541–549. doi: 10.1016/0006-291x(77)91506-6. [DOI] [PubMed] [Google Scholar]
  6. Gudi R., Bowker-Kinley M. M., Kedishvili N. Y., Zhao Y., Popov K. M. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem. 1995 Dec 1;270(48):28989–28994. doi: 10.1074/jbc.270.48.28989. [DOI] [PubMed] [Google Scholar]
  7. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  8. Harris R. A., Bowker-Kinley M. M., Wu P., Jeng J., Popov K. M. Dihydrolipoamide dehydrogenase-binding protein of the human pyruvate dehydrogenase complex. DNA-derived amino acid sequence, expression, and reconstitution of the pyruvate dehydrogenase complex. J Biol Chem. 1997 Aug 8;272(32):19746–19751. doi: 10.1074/jbc.272.32.19746. [DOI] [PubMed] [Google Scholar]
  9. Holness M. J., Sugden M. C. Regulation of renal and hepatic pyruvate dehydrogenase complex on carbohydrate re-feeding after starvation. Possible mechanisms and a regulatory role for thyroid hormone. Biochem J. 1987 Jan 15;241(2):421–425. doi: 10.1042/bj2410421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howard M. J., Fuller C., Broadhurst R. W., Perham R. N., Tang J. G., Quinn J., Diamond A. G., Yeaman S. J. Three-dimensional structure of the major autoantigen in primary biliary cirrhosis. Gastroenterology. 1998 Jul;115(1):139–146. doi: 10.1016/s0016-5085(98)70375-0. [DOI] [PubMed] [Google Scholar]
  11. Hucho F., Randall D. D., Roche T. E., Burgett M. W., Pelley J. W., Reed L. J. -Keto acid dehydrogenase complexes. XVII. Kinetic and regulatory properties of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase from bovine kidney and heart. Arch Biochem Biophys. 1972 Jul;151(1):328–340. doi: 10.1016/0003-9861(72)90504-8. [DOI] [PubMed] [Google Scholar]
  12. Jeng J., Huh T. L., Song B. J. Production of an enzymatically active E1 component of human pyruvate dehydrogenase complex in Escherichia coli: supporting role of E1 beta subunit in E1 activity. Biochem Biophys Res Commun. 1994 Aug 30;203(1):225–230. doi: 10.1006/bbrc.1994.2171. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Linn T. C., Pettit F. H., Hucho F., Reed L. J. Alpha-keto acid dehydrogenase complexes. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart, and liver mitochondria. Proc Natl Acad Sci U S A. 1969 Sep;64(1):227–234. doi: 10.1073/pnas.64.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Linn T. C., Pettit F. H., Reed L. J. Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci U S A. 1969 Jan;62(1):234–241. doi: 10.1073/pnas.62.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu S., Baker J. C., Roche T. E. Binding of the pyruvate dehydrogenase kinase to recombinant constructs containing the inner lipoyl domain of the dihydrolipoyl acetyltransferase component. J Biol Chem. 1995 Jan 13;270(2):793–800. doi: 10.1074/jbc.270.2.793. [DOI] [PubMed] [Google Scholar]
  18. Mann W. R., Dragland C. J., Vinluan C. C., Vedananda T. R., Bell P. A., Aicher T. D. Diverse mechanisms of inhibition of pyruvate dehydrogenase kinase by structurally distinct inhibitors. Biochim Biophys Acta. 2000 Jul 14;1480(1-2):283–292. doi: 10.1016/s0167-4838(00)00079-0. [DOI] [PubMed] [Google Scholar]
  19. Ono K., Radke G. A., Roche T. E., Rahmatullah M. Partial activation of the pyruvate dehydrogenase kinase by the lipoyl domain region of E2 and interchange of the kinase between lipoyl domain regions. J Biol Chem. 1993 Dec 15;268(35):26135–26143. [PubMed] [Google Scholar]
  20. Patel M. S., Roche T. E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990 Nov;4(14):3224–3233. doi: 10.1096/fasebj.4.14.2227213. [DOI] [PubMed] [Google Scholar]
  21. Pettit F. H., Pelley J. W., Reed L. J. Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios. Biochem Biophys Res Commun. 1975 Jul 22;65(2):575–582. doi: 10.1016/s0006-291x(75)80185-9. [DOI] [PubMed] [Google Scholar]
  22. Popov K. M., Shimomura Y., Harris R. A. Purification and comparative study of the kinases specific for branched chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase. Protein Expr Purif. 1991 Aug;2(4):278–286. doi: 10.1016/1046-5928(91)90084-v. [DOI] [PubMed] [Google Scholar]
  23. Radke G. A., Ono K., Ravindran S., Roche T. E. Critical role of a lipoyl cofactor of the dihydrolipoyl acetyltransferase in the binding and enhanced function of the pyruvate dehydrogenase kinase. Biochem Biophys Res Commun. 1993 Feb 15;190(3):982–991. doi: 10.1006/bbrc.1993.1146. [DOI] [PubMed] [Google Scholar]
  24. Randle P. J. Fuel selection in animals. Biochem Soc Trans. 1986 Oct;14(5):799–806. doi: 10.1042/bst0140799. [DOI] [PubMed] [Google Scholar]
  25. Roche T. E., Reed L. J. Monovalent cation requirement for ADP inhibition of pyruvate dehydrogenase kinase. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1341–1348. doi: 10.1016/0006-291x(74)90461-6. [DOI] [PubMed] [Google Scholar]
  26. Rowles J., Scherer S. W., Xi T., Majer M., Nickle D. C., Rommens J. M., Popov K. M., Harris R. A., Riebow N. L., Xia J. Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J Biol Chem. 1996 Sep 13;271(37):22376–22382. doi: 10.1074/jbc.271.37.22376. [DOI] [PubMed] [Google Scholar]
  27. Sale G. J., Randle P. J. Analysis of site occupancies in [32P]phosphorylated pyruvate dehydrogenase complexes by aspartyl-prolyl cleavage of tryptic phosphopeptides. Eur J Biochem. 1981 Dec;120(3):535–540. doi: 10.1111/j.1432-1033.1981.tb05733.x. [DOI] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stepp L. R., Pettit F. H., Yeaman S. J., Reed L. J. Purification and properties of pyruvate dehydrogenase kinase from bovine kidney. J Biol Chem. 1983 Aug 10;258(15):9454–9458. [PubMed] [Google Scholar]
  30. Steussy C. N., Popov K. M., Bowker-Kinley M. M., Sloan R. B., Jr, Harris R. A., Hamilton J. A. Structure of pyruvate dehydrogenase kinase. Novel folding pattern for a serine protein kinase. J Biol Chem. 2001 Aug 1;276(40):37443–37450. doi: 10.1074/jbc.M104285200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Teague W. M., Pettit F. H., Wu T. L., Silberman S. R., Reed L. J. Purification and properties of pyruvate dehydrogenase phosphatase from bovine heart and kidney. Biochemistry. 1982 Oct 26;21(22):5585–5592. doi: 10.1021/bi00265a031. [DOI] [PubMed] [Google Scholar]
  32. Wu P., Sato J., Zhao Y., Jaskiewicz J., Popov K. M., Harris R. A. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J. 1998 Jan 1;329(Pt 1):197–201. doi: 10.1042/bj3290197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhou Z. H., McCarthy D. B., O'Connor C. M., Reed L. J., Stoops J. K. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14802–14807. doi: 10.1073/pnas.011597698. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES