Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):97–107. doi: 10.1042/BJ20020154

Oxidation of nitric oxide by oxomanganese-salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics.

Martyn A Sharpe 1, Richard Ollosson 1, Victoria C Stewart 1, John B Clark 1
PMCID: PMC1222749  PMID: 11994046

Abstract

Manganese-salen complexes (Mn-Salen), including EUK-8 [manganese N,N'-bis(salicylidene)ethylenediamine chloride] and EUK-134 [manganese 3-methoxy N,N'-bis(salicylidene)ethylenediamine chloride], have been reported to possess combined superoxide dismutase (SOD) and catalase mimetic functions. Because of this SOD/catalase mimicry, EUK-8 and EUK-134 have been investigated as possible therapeutic agents in neurological disorders resulting from oxidative stress, including Alzheimer's disease, Parkinson's disease, stroke and multiple sclerosis. These actions have been explained by the ability of the Mn-Salen to remove deleterious superoxide (O(2)(-)) and H(2)O(2). However, in addition to oxidative stress, cells in models for neurodegenerative diseases may also be subjected to damage from reactive nitrogen oxides (nitrosative stress), resulting from elevated levels of NO and sister compounds, including peroxynitrite (ONOO(-)). We have been examining the interaction of EUK-8 and EUK-134 with NO and ONOO(-). We find that in the presence of a per-species (H(2)O(2), ONOO(-), peracetate and persulphate), the Mn-Salen complexes are oxidized to the corresponding oxo-species (oxoMn-Salen). OxoMn-Salens are potent oxidants, and we demonstrate that they can rapidly oxidize NO to NO(2) and also oxidize nitrite (NO(2)(-) to nitrate (NO(2)(-)). Thus these Mn-Salens have the potential to ameliorate cellular damage caused by both oxidative and nitrosative stresses, by the catalytic breakdown of O(2)(-), H(2)O(2), ONOO(-) and NO to benign species: O(2), H(2)O, NO(2)(-) and NO(3)(-).

Full Text

The Full Text of this article is available as a PDF (216.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker K., Marcus C. B., Huffman K., Kruk H., Malfroy B., Doctrow S. R. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J Pharmacol Exp Ther. 1998 Jan;284(1):215–221. [PubMed] [Google Scholar]
  2. Baudry M., Etienne S., Bruce A., Palucki M., Jacobsen E., Malfroy B. Salen-manganese complexes are superoxide dismutase-mimics. Biochem Biophys Res Commun. 1993 Apr 30;192(2):964–968. doi: 10.1006/bbrc.1993.1509. [DOI] [PubMed] [Google Scholar]
  3. Bolaños J. P., Peuchen S., Heales S. J., Land J. M., Clark J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem. 1994 Sep;63(3):910–916. doi: 10.1046/j.1471-4159.1994.63030910.x. [DOI] [PubMed] [Google Scholar]
  4. Brown G. C. Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem. 1995 Aug 15;232(1):188–191. doi: 10.1111/j.1432-1033.1995.tb20798.x. [DOI] [PubMed] [Google Scholar]
  5. Bruce A. J., Malfroy B., Baudry M. beta-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2312–2316. doi: 10.1073/pnas.93.6.2312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carr A. C., Winterbourn C. C. Oxidation of neutrophil glutathione and protein thiols by myeloperoxidase-derived hypochlorous acid. Biochem J. 1997 Oct 1;327(Pt 1):275–281. doi: 10.1042/bj3270275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  8. Eliasson M. J., Huang Z., Ferrante R. J., Sasamata M., Molliver M. E., Snyder S. H., Moskowitz M. A. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci. 1999 Jul 15;19(14):5910–5918. doi: 10.1523/JNEUROSCI.19-14-05910.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferrante R. J., Hantraye P., Brouillet E., Beal M. F. Increased nitrotyrosine immunoreactivity in substantia nigra neurons in MPTP treated baboons is blocked by inhibition of neuronal nitric oxide synthase. Brain Res. 1999 Mar 27;823(1-2):177–182. doi: 10.1016/s0006-8993(99)01166-x. [DOI] [PubMed] [Google Scholar]
  10. Gianello P., Saliez A., Bufkens X., Pettinger R., Misseleyn D., Hori S., Malfroy B. EUK-134, a synthetic superoxide dismutase and catalase mimetic, protects rat kidneys from ischemia-reperfusion-induced damage. Transplantation. 1996 Dec 15;62(11):1664–1666. doi: 10.1097/00007890-199612150-00022. [DOI] [PubMed] [Google Scholar]
  11. Gracy R. W., Talent J. M., Kong Y., Conrad C. C. Reactive oxygen species: the unavoidable environmental insult? Mutat Res. 1999 Jul 16;428(1-2):17–22. doi: 10.1016/s1383-5742(99)00027-7. [DOI] [PubMed] [Google Scholar]
  12. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  13. Griswold C. M., Matthews A. L., Bewley K. E., Mahaffey J. W. Molecular characterization and rescue of acatalasemic mutants of Drosophila melanogaster. Genetics. 1993 Jul;134(3):781–788. doi: 10.1093/genetics/134.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harman D. Aging and disease: extending functional life span. Ann N Y Acad Sci. 1996 Jun 15;786:321–336. doi: 10.1111/j.1749-6632.1996.tb39074.x. [DOI] [PubMed] [Google Scholar]
  15. Heales S. J., Bolaños J. P., Stewart V. C., Brookes P. S., Land J. M., Clark J. B. Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta. 1999 Feb 9;1410(2):215–228. doi: 10.1016/s0005-2728(98)00168-6. [DOI] [PubMed] [Google Scholar]
  16. Horowitz P. M., Butler M., McClure G. D., Jr Reducing sugars can induce the oxidative inactivation of rhodanese. J Biol Chem. 1992 Nov 25;267(33):23596–23600. [PubMed] [Google Scholar]
  17. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  18. Jung C., Rong Y., Doctrow S., Baudry M., Malfroy B., Xu Z. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci Lett. 2001 May 25;304(3):157–160. doi: 10.1016/s0304-3940(01)01784-0. [DOI] [PubMed] [Google Scholar]
  19. Kampf C., Roomans G. M. Effects of hypochlorite on cultured respiratory epithelial cells. Free Radic Res. 2001 May;34(5):499–511. doi: 10.1080/10715760100300441. [DOI] [PubMed] [Google Scholar]
  20. Kasapoglu M., Ozben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol. 2001 Feb;36(2):209–220. doi: 10.1016/s0531-5565(00)00198-4. [DOI] [PubMed] [Google Scholar]
  21. Ku H. H., Brunk U. T., Sohal R. S. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med. 1993 Dec;15(6):621–627. doi: 10.1016/0891-5849(93)90165-q. [DOI] [PubMed] [Google Scholar]
  22. Ku H. H., Sohal R. S. Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev. 1993 Nov;72(1):67–76. doi: 10.1016/0047-6374(93)90132-b. [DOI] [PubMed] [Google Scholar]
  23. Law A., Gauthier S., Quirion R. Say NO to Alzheimer's disease: the putative links between nitric oxide and dementia of the Alzheimer's type. Brain Res Brain Res Rev. 2001 Mar;35(1):73–96. doi: 10.1016/s0165-0173(00)00051-5. [DOI] [PubMed] [Google Scholar]
  24. Lehnig M. Radical mechanisms of the decomposition of peroxynitrite and the peroxynitrite-CO(2) adduct and of reactions with L-tyrosine and related compounds as studied by (15)N chemically induced dynamic nuclear polarization. Arch Biochem Biophys. 1999 Aug 15;368(2):303–318. doi: 10.1006/abbi.1999.1268. [DOI] [PubMed] [Google Scholar]
  25. Malfroy B., Doctrow S. R., Orr P. L., Tocco G., Fedoseyeva E. V., Benichou G. Prevention and suppression of autoimmune encephalomyelitis by EUK-8, a synthetic catalytic scavenger of oxygen-reactive metabolites. Cell Immunol. 1997 Apr 10;177(1):62–68. doi: 10.1006/cimm.1997.1091. [DOI] [PubMed] [Google Scholar]
  26. Melov S., Ravenscroft J., Malik S., Gill M. S., Walker D. W., Clayton P. E., Wallace D. C., Malfroy B., Doctrow S. R., Lithgow G. J. Extension of life-span with superoxide dismutase/catalase mimetics. Science. 2000 Sep 1;289(5484):1567–1569. doi: 10.1126/science.289.5484.1567. [DOI] [PubMed] [Google Scholar]
  27. Miranda K. M., Espey M. G., Wink D. A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001 Feb;5(1):62–71. doi: 10.1006/niox.2000.0319. [DOI] [PubMed] [Google Scholar]
  28. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  29. Oleszak E. L., Zaczynska E., Bhattacharjee M., Butunoi C., Legido A., Katsetos C. D. Inducible nitric oxide synthase and nitrotyrosine are found in monocytes/macrophages and/or astrocytes in acute, but not in chronic, multiple sclerosis. Clin Diagn Lab Immunol. 1998 Jul;5(4):438–445. doi: 10.1128/cdli.5.4.438-445.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Poderoso J. J., Carreras M. C., Schöpfer F., Lisdero C. L., Riobó N. A., Giulivi C., Boveris A. D., Boveris A., Cadenas E. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radic Biol Med. 1999 Apr;26(7-8):925–935. doi: 10.1016/s0891-5849(98)00277-9. [DOI] [PubMed] [Google Scholar]
  31. Pong K., Doctrow S. R., Baudry M. Prevention of 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons. Brain Res. 2000 Oct 27;881(2):182–189. doi: 10.1016/s0006-8993(00)02841-9. [DOI] [PubMed] [Google Scholar]
  32. Pryor W. A., Jin X., Squadrito G. L. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11173–11177. doi: 10.1073/pnas.91.23.11173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pucheu S., Boucher F., Sulpice T., Tresallet N., Bonhomme Y., Malfroy B., de Leiris J. EUK-8 a synthetic catalytic scavenger of reactive oxygen species protects isolated iron-overloaded rat heart from functional and structural damage induced by ischemia/reperfusion. Cardiovasc Drugs Ther. 1996 Jul;10(3):331–339. doi: 10.1007/BF02627957. [DOI] [PubMed] [Google Scholar]
  34. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  35. Rogina B., Helfand S. L. Cu, Zn superoxide dismutase deficiency accelerates the time course of an age-related marker in Drosophila melanogaster. Biogerontology. 2000;1(2):163–169. doi: 10.1023/a:1010039813107. [DOI] [PubMed] [Google Scholar]
  36. Rong Y., Doctrow S. R., Tocco G., Baudry M. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9897–9902. doi: 10.1073/pnas.96.17.9897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sasaki S., Shibata N., Komori T., Iwata M. iNOS and nitrotyrosine immunoreactivity in amyotrophic lateral sclerosis. Neurosci Lett. 2000 Sep 8;291(1):44–48. doi: 10.1016/s0304-3940(00)01370-7. [DOI] [PubMed] [Google Scholar]
  38. Sayre L. M., Smith M. A., Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem. 2001 Jun;8(7):721–738. doi: 10.2174/0929867013372922. [DOI] [PubMed] [Google Scholar]
  39. Sharpe M. A., Cooper C. E. Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J. 1998 May 15;332(Pt 1):9–19. doi: 10.1042/bj3320009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sloane J. A., Hollander W., Moss M. B., Rosene D. L., Abraham C. R. Increased microglial activation and protein nitration in white matter of the aging monkey. Neurobiol Aging. 1999 Jul-Aug;20(4):395–405. doi: 10.1016/s0197-4580(99)00066-4. [DOI] [PubMed] [Google Scholar]
  41. Sohal R. S., Agarwal A., Agarwal S., Orr W. C. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem. 1995 Jun 30;270(26):15671–15674. doi: 10.1074/jbc.270.26.15671. [DOI] [PubMed] [Google Scholar]
  42. Thomas D. D., Liu X., Kantrow S. P., Lancaster J. R., Jr The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355–360. doi: 10.1073/pnas.011379598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tohgi H., Abe T., Yamazaki K., Murata T., Ishizaki E., Isobe C. Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer's disease. Neurosci Lett. 1999 Jul 2;269(1):52–54. doi: 10.1016/s0304-3940(99)00406-1. [DOI] [PubMed] [Google Scholar]
  44. Uppu RM, Pryor WA. Synthesis of Peroxynitrite in a Two-Phase System Using Isoamyl Nitrite and Hydrogen Peroxide. Anal Biochem. 1996 May 1;236(2):242–249. [PubMed] [Google Scholar]
  45. Uttenthal L. O., Alonso D., Fernández A. P., Campbell R. O., Moro M. A., Leza J. C., Lizasoain I., Esteban F. J., Barroso J. B., Valderrama R. Neuronal and inducible nitric oxide synthase and nitrotyrosine immunoreactivities in the cerebral cortex of the aging rat. Microsc Res Tech. 1998 Oct 1;43(1):75–88. doi: 10.1002/(SICI)1097-0029(19981001)43:1<75::AID-JEMT11>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  46. Wheeler A. P., Bernard G. R. Treating patients with severe sepsis. N Engl J Med. 1999 Jan 21;340(3):207–214. doi: 10.1056/NEJM199901213400307. [DOI] [PubMed] [Google Scholar]
  47. Wink D. A., Darbyshire J. F., Nims R. W., Saavedra J. E., Ford P. C. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol. 1993 Jan-Feb;6(1):23–27. doi: 10.1021/tx00031a003. [DOI] [PubMed] [Google Scholar]
  48. van der Loo B., Labugger R., Skepper J. N., Bachschmid M., Kilo J., Powell J. M., Palacios-Callender M., Erusalimsky J. D., Quaschning T., Malinski T. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med. 2000 Dec 18;192(12):1731–1744. doi: 10.1084/jem.192.12.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES