Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):265–272. doi: 10.1042/BJ20020148

Severe pyridine nucleotide depletion in fibroblasts from Lesch-Nyhan patients.

Lynette D Fairbanks 1, Gabriella Jacomelli 1, Vanna Micheli 1, Tina Slade 1, H Anne Simmonds 1
PMCID: PMC1222752  PMID: 11996669

Abstract

The relationship between a complete deficiency of the purine enzyme hypoxanthine-guanine phosphoribosyltransferase and the neurobehavioural abnormalities in Lesch-Nyhan disease remains an enigma. In vitro studies using lymphoblasts or fibroblasts have evaluated purine and pyrimidine metabolism with conflicting results. This study focused on pyridine nucleotide metabolism in control and Lesch-Nyhan fibroblasts using radiolabelled salvage precursors to couple the extent of uptake with endocellular nucleotide concentrations. The novel finding, highlighted by specific culture conditions, was a marked NAD depletion in Lesch-Nyhan fibroblasts. ATP and GTP were also 50% of the control, as reported in lymphoblasts. A 6-fold greater incorporation of [(14)C]nicotinic acid into nicotinic acid- adenine dinucleotide by Lesch-Nyhan fibroblasts, with no unmetabolized substrate (20% in controls), supported disturbed pyridine metabolism, NAD depletion being related to utilization by poly(ADP-ribose) polymerase in DNA repair. Although pyrimidine nucleotide concentrations were similar to controls, Lesch-Nyhan cells showed reduced [(14)C]cytidine/uridine salvage into UDP sugars. Incorporation of [(14)C]uridine into CTP by both was minimal, with more than 50% [(14)C]cytidine metabolized to UTP, indicating that fibroblasts, unlike lymphoblasts, lack active CTP synthetase, but possess cytidine deaminase. Restricted culture conditions may be neccesary to mimic the situation in human brain cells at an early developmental stage. Cell type may be equally important. NAD plus ATP depletion in developing brain could restrict DNA repair, leading to neuronal damage/loss by apoptosis, and, with GTP depletion, affect neurotransmitter synthesis and basal ganglia dopaminergic neuronal systems. Thus aberrant pyridine nucleotide metabolism could play a vital role in the pathophysiology of Lesch-Nyhan disease.

Full Text

The Full Text of this article is available as a PDF (225.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allsop J., Watts R. W. Purine synthesis and salvage in brain and liver. Adv Exp Med Biol. 1984;165(Pt B):21–26. doi: 10.1007/978-1-4757-0390-0_5. [DOI] [PubMed] [Google Scholar]
  2. Benveniste P., Cohen A. p53 expression is required for thymocyte apoptosis induced by adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8373–8377. doi: 10.1073/pnas.92.18.8373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boer P., Brosh S., Wasserman L., Hammel I., Zoref-Shani E., Sperling O. Decelerated rate of dendrite outgrowth from dopaminergic neurons in primary cultures from brains of hypoxanthine phosphoribosyltransferase-deficient knockout mice. Neurosci Lett. 2001 Apr 27;303(1):45–48. doi: 10.1016/s0304-3940(01)01716-5. [DOI] [PubMed] [Google Scholar]
  4. Brosh S., Boer P., Sperling O., Zoref-Shani E. Elevated UTP and CTP content in cultured neurons from HPRT-deficient transgenic mice. J Mol Neurosci. 2000 Feb-Apr;14(1-2):87–91. doi: 10.1385/JMN:14:1-2:087. [DOI] [PubMed] [Google Scholar]
  5. Bökkerink J. P., De Abreu R. A., Bakker M. A., Hulscher T. W., Van Baal J. M., De Vaan G. A. Dose-related effects of methotrexate on purine and pyrimidine nucleotides and on cell-kinetic parameters in MOLT-4 malignant human T-lymphoblasts. Biochem Pharmacol. 1986 Oct 15;35(20):3557–3564. doi: 10.1016/0006-2952(86)90626-x. [DOI] [PubMed] [Google Scholar]
  6. Carson D. A., Seto S., Wasson D. B., Carrera C. J. DNA strand breaks, NAD metabolism, and programmed cell death. Exp Cell Res. 1986 Jun;164(2):273–281. doi: 10.1016/0014-4827(86)90028-5. [DOI] [PubMed] [Google Scholar]
  7. Dobbing J., Sands J. Vulnerability of developing brain. IX. The effect of nutritional growth retardation on the timing of the brain growth-spurt. Biol Neonate. 1971;19(4):363–378. doi: 10.1159/000240430. [DOI] [PubMed] [Google Scholar]
  8. Fairbanks L. D., Bofill M., Ruckemann K., Simmonds H. A. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J Biol Chem. 1995 Dec 15;270(50):29682–29689. [PubMed] [Google Scholar]
  9. Fleisher Barry E., Baum David, Brudos Ginger, Burge Mary, Carson Elaine, Constantinou Janet, Duckworth Josh, Gamberg Pat, Klein Pat, Luikart Helen. Infant heart transplantation at Stanford: growth and neurodevelopmental outcome. Pediatrics. 2002 Jan;109(1):1–7. doi: 10.1542/peds.109.1.1. [DOI] [PubMed] [Google Scholar]
  10. GEIGER A., YAMASAKI S. Cytidine and uridine requirement of the brain. J Neurochem. 1956 Dec;1(2):93–100. doi: 10.1111/j.1471-4159.1956.tb12059.x. [DOI] [PubMed] [Google Scholar]
  11. Harris J. C., Lee R. R., Jinnah H. A., Wong D. F., Yaster M., Bryan R. N. Craniocerebral magnetic resonance imaging measurement and findings in Lesch-Nyhan syndrome. Arch Neurol. 1998 Apr;55(4):547–553. doi: 10.1001/archneur.55.4.547. [DOI] [PubMed] [Google Scholar]
  12. Hershfield M. S., Seegmiller J. E. Regulation of de novo purine synthesis in human lymphoblasts. Similar rates of de novo synthesis during growth by normal cells and mutants deficient in hypoxanthine-guanine phosphoribosyltransferase activity. J Biol Chem. 1977 Sep 10;252(17):6002–6010. [PubMed] [Google Scholar]
  13. Idoyaga-Vargas V., Carminatti H. Postnatal changes in dolichol-pathway enzyme activities in cerebral cortex neurons. Biochem J. 1982 Jan 15;202(1):87–95. doi: 10.1042/bj2020087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jinnah H. A., De Gregorio L., Harris J. C., Nyhan W. L., O'Neill J. P. The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutat Res. 2000 Oct;463(3):309–326. doi: 10.1016/s1383-5742(00)00052-1. [DOI] [PubMed] [Google Scholar]
  15. Jinnah H. A., Jones M. D., Wojcik B. E., Rothstein J. D., Hess E. J., Friedmann T., Breese G. R. Influence of age and strain on striatal dopamine loss in a genetic mouse model of Lesch-Nyhan disease. J Neurochem. 1999 Jan;72(1):225–229. doi: 10.1046/j.1471-4159.1999.0720225.x. [DOI] [PubMed] [Google Scholar]
  16. Jinnah H. A., Page T., Friedmann T. Brain purines in a genetic mouse model of Lesch-Nyhan disease. J Neurochem. 1993 Jun;60(6):2036–2045. doi: 10.1111/j.1471-4159.1993.tb03488.x. [DOI] [PubMed] [Google Scholar]
  17. LESCH M., NYHAN W. L. A FAMILIAL DISORDER OF URIC ACID METABOLISM AND CENTRAL NERVOUS SYSTEM FUNCTION. Am J Med. 1964 Apr;36:561–570. doi: 10.1016/0002-9343(64)90104-4. [DOI] [PubMed] [Google Scholar]
  18. Lloyd K. G., Hornykiewicz O., Davidson L., Shannak K., Farley I., Goldstein M., Shibuya M., Kelley W. N., Fox I. H. Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. N Engl J Med. 1981 Nov 5;305(19):1106–1111. doi: 10.1056/NEJM198111053051902. [DOI] [PubMed] [Google Scholar]
  19. McCreanor G. M., Harkness R. A. Lesch-Nyhan syndrome and its pathogenesis: normal nicotinamide-adenine dinucleotide but reduced ATP concentrations that correlate with reduced poly(ADP-ribose) synthetase activity in HPRT-deficient lymphoblasts. J Inherit Metab Dis. 1995;18(6):737–747. doi: 10.1007/BF02436765. [DOI] [PubMed] [Google Scholar]
  20. Micheli V., Simmonds H. A., Ricci C. Regulation of nicotinamide-adenine dinucleotide synthesis in erythrocytes of patients with hypoxanthine-guanine phosphoribosyltransferase deficiency and a patient with phosphoribosylpyrophosphate synthetase superactivity. Clin Sci (Lond) 1990 Feb;78(2):239–245. doi: 10.1042/cs0780239. [DOI] [PubMed] [Google Scholar]
  21. Micheli V., Simmonds H. A., Sestini S., Ricci C. Importance of nicotinamide as an NAD precursor in the human erythrocyte. Arch Biochem Biophys. 1990 Nov 15;283(1):40–45. doi: 10.1016/0003-9861(90)90609-3. [DOI] [PubMed] [Google Scholar]
  22. Morioka K., Tanaka K., Ono T. Effect of medium change on poly(ADP-ribose) synthesis in Friend erythroleukemic cells. Biochem Biophys Res Commun. 1980 May 30;94(2):592–599. doi: 10.1016/0006-291x(80)91273-5. [DOI] [PubMed] [Google Scholar]
  23. Nuki G., Astrin K., Brenton D., Cruikshank M., Lever J., Seegmiller J. E. Purine and pyrimidine nucleotide concentrations in cells with decreased hypoxanthine-guanine-phosphoribosyltransferase (HGPRT) activity. Adv Exp Med Biol. 1977;76A:326–340. doi: 10.1007/978-1-4613-4223-6_41. [DOI] [PubMed] [Google Scholar]
  24. Page T., Yu A., Fontanesi J., Nyhan W. L. Developmental disorder associated with increased cellular nucleotidase activity. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11601–11606. doi: 10.1073/pnas.94.21.11601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pelled D., Sperling O., Zoref-Shani E. Abnormal purine and pyrimidine nucleotide content in primary astroglia cultures from hypoxanthine-guanine phosphoribosyltransferase-deficient transgenic mice. J Neurochem. 1999 Mar;72(3):1139–1145. doi: 10.1046/j.1471-4159.1999.0721139.x. [DOI] [PubMed] [Google Scholar]
  26. Rivier F., Echenne B., Chaix Y., Robert A., Delisle M. B., Calvas P., Mornet D. Perturbation in dystrophin-associated glycoprotein complex in a boy with Becker muscular dystrophy. Brain Dev. 2000 Jan;22(1):65–68. doi: 10.1016/s0387-7604(99)00112-6. [DOI] [PubMed] [Google Scholar]
  27. Robinson R., McCarthy G. T., Bandmann O., Dobbie M., Surtees R., Wood N. W. GTP cyclohydrolase deficiency; intrafamilial variation in clinical phenotype, including levodopa responsiveness. J Neurol Neurosurg Psychiatry. 1999 Jan;66(1):86–89. doi: 10.1136/jnnp.66.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rogers M. H., Lwin R., Fairbanks L., Gerritsen B., Gaspar H. B. Cognitive and behavioral abnormalities in adenosine deaminase deficient severe combined immunodeficiency. J Pediatr. 2001 Jul;139(1):44–50. doi: 10.1067/mpd.2001.115023. [DOI] [PubMed] [Google Scholar]
  29. Rosenbloom F. M. Possible mechanism for increased purine biosynthesis de novo in Lesch-Nyhan syndrome. Fed Proc. 1968 Jul-Aug;27(4):1063–1066. [PubMed] [Google Scholar]
  30. Schweiger M., Auer B., Burtscher H. J., Hirsch-Kauffmann M., Klocker H., Schneider R. The Fritz-Lipmann lecture. DNA repair in human cells. Biochemistry of the hereditary diseases Fanconi's anaemia and Cockayne syndrome. Eur J Biochem. 1987 Jun 1;165(2):235–242. doi: 10.1111/j.1432-1033.1987.tb11433.x. [DOI] [PubMed] [Google Scholar]
  31. Seegmiller J. E., Rosenbloom F. M., Kelley W. N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967 Mar 31;155(3770):1682–1684. doi: 10.1126/science.155.3770.1682. [DOI] [PubMed] [Google Scholar]
  32. Sherley J. L. Guanine nucleotide biosynthesis is regulated by the cellular p53 concentration. J Biol Chem. 1991 Dec 25;266(36):24815–24828. [PubMed] [Google Scholar]
  33. Simmonds H. A., Fairbanks L. D., Morris G. S., Webster D. R., Harley E. H. Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine or pyrimidine metabolism. Clin Chim Acta. 1988 Feb 15;171(2-3):197–210. doi: 10.1016/0009-8981(88)90145-3. [DOI] [PubMed] [Google Scholar]
  34. Tremblay G. C., Jimenez U., Crandall D. E. Pyrimidine biosynthesis and its regulation in the developing rat brain. J Neurochem. 1976 Jan;26(1):57–64. [PubMed] [Google Scholar]
  35. Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]
  36. Watts R. W. Defects of tetrahydrobiopterin synthesis and their possible relationship to a disorder of purine metabolism (the Lesch-Nyhan syndrome). Adv Enzyme Regul. 1985;23:25–58. doi: 10.1016/0065-2571(85)90039-1. [DOI] [PubMed] [Google Scholar]
  37. Wurtman R. J. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. Trends Neurosci. 1992 Apr;15(4):117–122. doi: 10.1016/0166-2236(92)90351-8. [DOI] [PubMed] [Google Scholar]
  38. Zhao Z., Crossland W. J., Kulkarni J. S., Wakade T. D., Wakade A. R. 2'-Deoxyadenosine causes cell death in embryonic chicken sympathetic ganglia and brain. Cell Tissue Res. 1999 May;296(2):281–291. doi: 10.1007/s004410051289. [DOI] [PubMed] [Google Scholar]
  39. Zimitat C., Nixon P. F. Glucose loading precipitates acute encephalopathy in thiamin-deficient rats. Metab Brain Dis. 1999 Mar;14(1):1–20. doi: 10.1023/a:1020653312697. [DOI] [PubMed] [Google Scholar]
  40. Zoref-Shani E., Bromberg Y., Brosh S., Sidi Y., Sperling O. Characterization of the alterations in purine nucleotide metabolism in hypoxanthine-guanine phosphoribosyltransferase-deficient rat neuroma cell line. J Neurochem. 1993 Aug;61(2):457–463. doi: 10.1111/j.1471-4159.1993.tb02146.x. [DOI] [PubMed] [Google Scholar]
  41. van den Berg A. A., van Lenthe H., Busch S., de Korte D., van Kuilenburg A. B., van Gennip A. H. The roles of uridine-cytidine kinase and CTP synthetase in the synthesis of CTP in malignant human T-lymphocytic cells. Leukemia. 1994 Aug;8(8):1375–1378. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES