Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):235–244. doi: 10.1042/BJ20011718

Fibroblast growth factor-2 binds to small heparin-derived oligosaccharides and stimulates a sustained phosphorylation of p42/44 mitogen-activated protein kinase and proliferation of rat mammary fibroblasts.

Maryse Delehedde 1, Malcolm Lyon 1, John T Gallagher 1, Philip S Rudland 1, David G Fernig 1
PMCID: PMC1222755  PMID: 12000311

Abstract

We examine the relationship between the chain length of heparin-derived oligosaccharides, fibroblast growth factor (FGF)-2 binding kinetics and the ability of the oligosaccharides to allow FGF-2-induced proliferation of chlorate-treated rat mammary fibroblasts. First, using an optical biosensor, we show that FGF-2 did not bind disaccharides, but definitively bound to tetrasaccharides. As the chain length increased from tetrasaccharide to octasaccharide, there was a substantial increase in k(ass) (564000 M(-1) x s(-1) to 2000000 M(-1) x s(-1), respectively) and affinity (K(d) 77 nM to 11 nM, respectively) for FGF-2. From decasaccharides and longer, the k(ass) and affinity for FGF-2 was reduced substantially (tetradecasaccharide k(ass) 470000 M(-1) x s(-1), K(d) 30 nM). In chlorate-treated, and hence sulphated, glycosaminoglycan-deficient cells, FGF-2 alone or in the presence of disaccharides did not stimulate DNA synthesis and it only elicited an early transient dual phosphorylation of p42/44 mitogen-activated protein kinase (MAPK). In the same cells FGF-2 in the presence of tetrasaccharides and longer oligosaccharides was able to restore DNA synthesis and enable the sustained dual phosphorylation of p42/44(MAPK). However, the oligosaccharides from tetrasaccharides to octasaccharides were less potent in proliferation assays than deca- and longer oligosaccharides. Therefore, there was no correlation between the binding parameters and the potency of the oligosaccharides in DNA synthesis assays. These results demonstrate that tetrasaccharides are able to bind FGF-2 and enable FGF-2 to stimulate cell proliferation, which sets important boundary conditions for models of the FGF-2-heparan sulphate-FGF receptor complex.

Full Text

The Full Text of this article is available as a PDF (245.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Wen J., Philo J. S. Stoichiometry of heparin binding to basic fibroblast growth factor. Arch Biochem Biophys. 1994 Jan;308(1):267–273. doi: 10.1006/abbi.1994.1037. [DOI] [PubMed] [Google Scholar]
  2. Bashkin P., Doctrow S., Klagsbrun M., Svahn C. M., Folkman J., Vlodavsky I. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry. 1989 Feb 21;28(4):1737–1743. doi: 10.1021/bi00430a047. [DOI] [PubMed] [Google Scholar]
  3. Cano E., Mahadevan L. C. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. 1995 Mar;20(3):117–122. doi: 10.1016/s0968-0004(00)88978-1. [DOI] [PubMed] [Google Scholar]
  4. Davis J. C., Venkataraman G., Shriver Z., Raj P. A., Sasisekharan R. Oligomeric self-association of basic fibroblast growth factor in the absence of heparin-like glycosaminoglycans. Biochem J. 1999 Aug 1;341(Pt 3):613–620. [PMC free article] [PubMed] [Google Scholar]
  5. Delehedde M., Lyon M., Sergeant N., Rahmoune H., Fernig D. G. Proteoglycans: pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. J Mammary Gland Biol Neoplasia. 2001 Jul;6(3):253–273. doi: 10.1023/a:1011367423085. [DOI] [PubMed] [Google Scholar]
  6. Delehedde M., Seve M., Sergeant N., Wartelle I., Lyon M., Rudland P. S., Fernig D. G. Fibroblast growth factor-2 stimulation of p42/44MAPK phosphorylation and IkappaB degradation is regulated by heparan sulfate/heparin in rat mammary fibroblasts. J Biol Chem. 2000 Oct 27;275(43):33905–33910. doi: 10.1074/jbc.M005949200. [DOI] [PubMed] [Google Scholar]
  7. Delehedde Maryse, Lyon Malcolm, Vidyasagar Rishma, McDonnell Timothy J., Fernig David G. Hepatocyte growth factor/scatter factor binds to small heparin-derived oligosaccharides and stimulates the proliferation of human HaCaT keratinocytes. J Biol Chem. 2002 Jan 17;277(14):12456–12462. doi: 10.1074/jbc.M111345200. [DOI] [PubMed] [Google Scholar]
  8. Edwards P. R., Gill A., Pollard-Knight D. V., Hoare M., Buckle P. E., Lowe P. A., Leatherbarrow R. J. Kinetics of protein-protein interactions at the surface of an optical biosensor. Anal Biochem. 1995 Oct 10;231(1):210–217. doi: 10.1006/abio.1995.1522. [DOI] [PubMed] [Google Scholar]
  9. Edwards P. R., Leatherbarrow R. J. Determination of association rate constants by an optical biosensor using initial rate analysis. Anal Biochem. 1997 Mar 1;246(1):1–6. doi: 10.1006/abio.1996.9922. [DOI] [PubMed] [Google Scholar]
  10. Faham S., Hileman R. E., Fromm J. R., Linhardt R. J., Rees D. C. Heparin structure and interactions with basic fibroblast growth factor. Science. 1996 Feb 23;271(5252):1116–1120. doi: 10.1126/science.271.5252.1116. [DOI] [PubMed] [Google Scholar]
  11. Fernig D. G. Optical biosensor techniques to analyze protein-polysaccharide interactions. Methods Mol Biol. 2001;171:505–518. doi: 10.1385/1-59259-209-0:505. [DOI] [PubMed] [Google Scholar]
  12. Fernig D. G., Smith J. A., Rudland P. S. Appearance of basic fibroblast growth factor receptors upon differentiation of rat mammary epithelial to myoepithelial-like cells in culture. J Cell Physiol. 1990 Jan;142(1):108–116. doi: 10.1002/jcp.1041420114. [DOI] [PubMed] [Google Scholar]
  13. Garrington T. P., Johnson G. L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 1999 Apr;11(2):211–218. doi: 10.1016/s0955-0674(99)80028-3. [DOI] [PubMed] [Google Scholar]
  14. Guimond S. E., Turnbull J. E. Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Curr Biol. 1999 Nov 18;9(22):1343–1346. doi: 10.1016/s0960-9822(00)80060-3. [DOI] [PubMed] [Google Scholar]
  15. Guimond S., Maccarana M., Olwin B. B., Lindahl U., Rapraeger A. C. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J Biol Chem. 1993 Nov 15;268(32):23906–23914. [PubMed] [Google Scholar]
  16. Hadari Y. R., Gotoh N., Kouhara H., Lax I., Schlessinger J. Critical role for the docking-protein FRS2 alpha in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci U S A. 2001 Jul 10;98(15):8578–8583. doi: 10.1073/pnas.161259898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hadari Y. R., Kouhara H., Lax I., Schlessinger J. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol Cell Biol. 1998 Jul;18(7):3966–3973. doi: 10.1128/mcb.18.7.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ishihara M., Shaklee P. N., Yang Z., Liang W., Wei Z., Stack R. J., Holme K. Structural features in heparin which modulate specific biological activities mediated by basic fibroblast growth factor. Glycobiology. 1994 Aug;4(4):451–458. doi: 10.1093/glycob/4.4.451. [DOI] [PubMed] [Google Scholar]
  19. Ishihara M. Structural requirements in heparin for binding and activation of FGF-1 and FGF-4 are different from that for FGF-2. Glycobiology. 1994 Dec;4(6):817–824. doi: 10.1093/glycob/4.6.817. [DOI] [PubMed] [Google Scholar]
  20. Ishihara M., Takano R., Kanda T., Hayashi K., Hara S., Kikuchi H., Yoshida K. Importance of 6-O-sulfate groups of glucosamine residues in heparin for activation of FGF-1 and FGF-2. J Biochem. 1995 Dec;118(6):1255–1260. doi: 10.1093/oxfordjournals.jbchem.a125015. [DOI] [PubMed] [Google Scholar]
  21. Ishihara M., Tyrrell D. J., Stauber G. B., Brown S., Cousens L. S., Stack R. J. Preparation of affinity-fractionated, heparin-derived oligosaccharides and their effects on selected biological activities mediated by basic fibroblast growth factor. J Biol Chem. 1993 Mar 5;268(7):4675–4683. [PubMed] [Google Scholar]
  22. Kan M., Wang F., Xu J., Crabb J. W., Hou J., McKeehan W. L. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science. 1993 Mar 26;259(5103):1918–1921. doi: 10.1126/science.8456318. [DOI] [PubMed] [Google Scholar]
  23. Kan M., Wu X., Wang F., McKeehan W. L. Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem. 1999 May 28;274(22):15947–15952. doi: 10.1074/jbc.274.22.15947. [DOI] [PubMed] [Google Scholar]
  24. Ke Y., Wilkinson M. C., Fernig D. G., Smith J. A., Rudland P. S., Barraclough R. A rapid procedure for production of human basic fibroblast growth factor in Escherichia coli cells. Biochim Biophys Acta. 1992 Jul 15;1131(3):307–310. doi: 10.1016/0167-4781(92)90029-y. [DOI] [PubMed] [Google Scholar]
  25. Kinsella L., Chen H. L., Smith J. A., Rudland P. S., Fernig D. G. Interactions of putative heparin-binding domains of basic fibroblast growth factor and its receptor, FGFR-1, with heparin using synthetic peptides. Glycoconj J. 1998 Apr;15(4):419–422. doi: 10.1023/a:1006986104865. [DOI] [PubMed] [Google Scholar]
  26. Kouhara H., Hadari Y. R., Spivak-Kroizman T., Schilling J., Bar-Sagi D., Lax I., Schlessinger J. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell. 1997 May 30;89(5):693–702. doi: 10.1016/s0092-8674(00)80252-4. [DOI] [PubMed] [Google Scholar]
  27. Lim Y. P., Low B. C., Lim J., Wong E. S., Guy G. R. Association of atypical protein kinase C isotypes with the docker protein FRS2 in fibroblast growth factor signaling. J Biol Chem. 1999 Jul 2;274(27):19025–19034. doi: 10.1074/jbc.274.27.19025. [DOI] [PubMed] [Google Scholar]
  28. Lin H. Y., Xu J., Ischenko I., Ornitz D. M., Halegoua S., Hayman M. J. Identification of the cytoplasmic regions of fibroblast growth factor (FGF) receptor 1 which play important roles in induction of neurite outgrowth in PC12 cells by FGF-1. Mol Cell Biol. 1998 Jul;18(7):3762–3770. doi: 10.1128/mcb.18.7.3762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lyon M., Gallagher J. T. Bio-specific sequences and domains in heparan sulphate and the regulation of cell growth and adhesion. Matrix Biol. 1998 Nov;17(7):485–493. doi: 10.1016/s0945-053x(98)90096-8. [DOI] [PubMed] [Google Scholar]
  30. Maccarana M., Casu B., Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem. 1993 Nov 15;268(32):23898–23905. [PubMed] [Google Scholar]
  31. Merry C. L., Lyon M., Deakin J. A., Hopwood J. J., Gallagher J. T. Highly sensitive sequencing of the sulfated domains of heparan sulfate. J Biol Chem. 1999 Jun 25;274(26):18455–18462. doi: 10.1074/jbc.274.26.18455. [DOI] [PubMed] [Google Scholar]
  32. Mohammadi M., Dikic I., Sorokin A., Burgess W. H., Jaye M., Schlessinger J. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol. 1996 Mar;16(3):977–989. doi: 10.1128/mcb.16.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mohammadi M., Schlessinger J., Hubbard S. R. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell. 1996 Aug 23;86(4):577–587. doi: 10.1016/s0092-8674(00)80131-2. [DOI] [PubMed] [Google Scholar]
  34. Mulloy B., Forster M. J. Conformation and dynamics of heparin and heparan sulfate. Glycobiology. 2000 Nov;10(11):1147–1156. doi: 10.1093/glycob/10.11.1147. [DOI] [PubMed] [Google Scholar]
  35. Mulloy B., Forster M. J., Jones C., Davies D. B. N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem J. 1993 Aug 1;293(Pt 3):849–858. doi: 10.1042/bj2930849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ornitz D. M., Herr A. B., Nilsson M., Westman J., Svahn C. M., Waksman G. FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides. Science. 1995 Apr 21;268(5209):432–436. doi: 10.1126/science.7536345. [DOI] [PubMed] [Google Scholar]
  37. Pantoliano M. W., Horlick R. A., Springer B. A., Van Dyk D. E., Tobery T., Wetmore D. R., Lear J. D., Nahapetian A. T., Bradley J. D., Sisk W. P. Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry. 1994 Aug 30;33(34):10229–10248. doi: 10.1021/bi00200a003. [DOI] [PubMed] [Google Scholar]
  38. Pellegrini L., Burke D. F., von Delft F., Mulloy B., Blundell T. L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000 Oct 26;407(6807):1029–1034. doi: 10.1038/35039551. [DOI] [PubMed] [Google Scholar]
  39. Pye D. A., Vives R. R., Turnbull J. E., Hyde P., Gallagher J. T. Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J Biol Chem. 1998 Sep 4;273(36):22936–22942. doi: 10.1074/jbc.273.36.22936. [DOI] [PubMed] [Google Scholar]
  40. Rahmoune H., Chen H. L., Gallagher J. T., Rudland P. S., Fernig D. G. Interaction of heparan sulfate from mammary cells with acidic fibroblast growth factor (FGF) and basic FGF. Regulation of the activity of basic FGF by high and low affinity binding sites in heparan sulfate. J Biol Chem. 1998 Mar 27;273(13):7303–7310. doi: 10.1074/jbc.273.13.7303. [DOI] [PubMed] [Google Scholar]
  41. Rahmoune H., Rudland P. S., Gallagher J. T., Fernig D. G. Hepatocyte growth factor/scatter factor has distinct classes of binding site in heparan sulfate from mammary cells. Biochemistry. 1998 Apr 28;37(17):6003–6008. doi: 10.1021/bi972468t. [DOI] [PubMed] [Google Scholar]
  42. Reiland J., Rapraeger A. C. Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J Cell Sci. 1993 Aug;105(Pt 4):1085–1093. doi: 10.1242/jcs.105.4.1085. [DOI] [PubMed] [Google Scholar]
  43. Rudland P. S., Twiston Davies A. C., Tsao S. W. Rat mammary preadipocytes in culture produce a trophic agent for mammary epithelia-prostaglandin E2. J Cell Physiol. 1984 Sep;120(3):364–376. doi: 10.1002/jcp.1041200315. [DOI] [PubMed] [Google Scholar]
  44. Sadir R., Forest E., Lortat-Jacob H. The heparan sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma-interferon-gamma receptor complex formation. J Biol Chem. 1998 May 1;273(18):10919–10925. doi: 10.1074/jbc.273.18.10919. [DOI] [PubMed] [Google Scholar]
  45. Schlessinger J., Plotnikov A. N., Ibrahimi O. A., Eliseenkova A. V., Yeh B. K., Yayon A., Linhardt R. J., Mohammadi M. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell. 2000 Sep;6(3):743–750. doi: 10.1016/s1097-2765(00)00073-3. [DOI] [PubMed] [Google Scholar]
  46. Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct. 1997;26:541–566. doi: 10.1146/annurev.biophys.26.1.541. [DOI] [PubMed] [Google Scholar]
  47. Sperinde G. V., Nugent M. A. Mechanisms of fibroblast growth factor 2 intracellular processing: a kinetic analysis of the role of heparan sulfate proteoglycans. Biochemistry. 2000 Apr 4;39(13):3788–3796. doi: 10.1021/bi992243d. [DOI] [PubMed] [Google Scholar]
  48. Springer B. A., Pantoliano M. W., Barbera F. A., Gunyuzlu P. L., Thompson L. D., Herblin W. F., Rosenfeld S. A., Book G. W. Identification and concerted function of two receptor binding surfaces on basic fibroblast growth factor required for mitogenesis. J Biol Chem. 1994 Oct 28;269(43):26879–26884. [PubMed] [Google Scholar]
  49. Thomson S., Mahadevan L. C., Clayton A. L. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin Cell Dev Biol. 1999 Apr;10(2):205–214. doi: 10.1006/scdb.1999.0302. [DOI] [PubMed] [Google Scholar]
  50. Turnbull J. E., Fernig D. G., Ke Y., Wilkinson M. C., Gallagher J. T. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem. 1992 May 25;267(15):10337–10341. [PubMed] [Google Scholar]
  51. Turnbull J., Powell A., Guimond S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 2001 Feb;11(2):75–82. doi: 10.1016/s0962-8924(00)01897-3. [DOI] [PubMed] [Google Scholar]
  52. Tyrrell D. J., Ishihara M., Rao N., Horne A., Kiefer M. C., Stauber G. B., Lam L. H., Stack R. J. Structure and biological activities of a heparin-derived hexasaccharide with high affinity for basic fibroblast growth factor. J Biol Chem. 1993 Mar 5;268(7):4684–4689. [PubMed] [Google Scholar]
  53. Walker A., Turnbull J. E., Gallagher J. T. Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. J Biol Chem. 1994 Jan 14;269(2):931–935. [PubMed] [Google Scholar]
  54. Xu H., Lee K. W., Goldfarb M. Novel recognition motif on fibroblast growth factor receptor mediates direct association and activation of SNT adapter proteins. J Biol Chem. 1998 Jul 17;273(29):17987–17990. doi: 10.1074/jbc.273.29.17987. [DOI] [PubMed] [Google Scholar]
  55. Yates E. A., Santini F., De Cristofano B., Payre N., Cosentino C., Guerrini M., Naggi A., Torri G., Hricovini M. Effect of substitution pattern on 1H, 13C NMR chemical shifts and 1J(CH) coupling constants in heparin derivatives. Carbohydr Res. 2000 Oct 20;329(1):239–247. doi: 10.1016/s0008-6215(00)00144-0. [DOI] [PubMed] [Google Scholar]
  56. Zhou F. Y., Kan M., Owens R. T., McKeehan W. L., Thompson J. A., Linhardt R. J., Hök M. Heparin-dependent fibroblast growth factor activities: effects of defined heparin oligosaccharides. Eur J Cell Biol. 1997 May;73(1):71–80. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES