Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):353–365. doi: 10.1042/BJ20020104

Characterization of the murine 5T4 oncofoetal antigen: a target for immunotherapy in cancer.

Andrew M Woods 1, Who W Wang 1, David M Shaw 1, Christopher M Ward 1, Miles W Carroll 1, Buddug R Rees 1, Peter L Stern 1
PMCID: PMC1222756  PMID: 12003637

Abstract

Human 5T4 oncofoetal antigen defined by the murine 5T4 monoclonal antibody is a highly glycosylated protein expressed by trophoblast and a few specialized adult epithelia. Up-regulation of 5T4 expression in some cancers is associated with poor clinical outcome; overexpression of human 5T4 cDNA in epithelial cells can alter their morphology and motility, supporting a role for such functions in cancer and development. A murine model to study 5T4 biology and tumour immunology would be useful. The production of m5T4-specific antibodies, their use in establishing transfected cells and documenting their biological properties in vitro are described. A rat monoclonal antibody specific for mouse 5T4 molecules by ELISA, flow cytometry, immunohistochemistry and immunoprecipitation was isolated and epitope mapped. Similar to its human counterpart, murine 5T4 antigen is a 72 kDa glycoprotein (immunoprecipitation and Western blot analysis) and exhibits punctate cell surface expression, dependent upon the integrity of the actin cytoskeleton. Likewise, overexpression of autologous murine 5T4 by B16 F10 melanoma cells and A9 L fibroblasts accentuates the 5T4 phenotype, which is characterized by a spindle-like morphology, increased motility, and reduced adhesion and proliferation rate. Immunohistochemical analysis of adult mouse tissues shows a restricted pattern of expression similar to that of human 5T4 antigen. The murine 5T4 antigen-expressing cell lines and antibody reagents are now being used to explore novel immunotherapies in pre-clinical models and the biology of 5T4 in development.

Full Text

The Full Text of this article is available as a PDF (699.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali A., Langdon J., Stern P., Partridge M. The pattern of expression of the 5T4 oncofoetal antigen on normal, dysplastic and malignant oral mucosa. Oral Oncol. 2001 Jan;37(1):57–64. doi: 10.1016/s1368-8375(00)00057-9. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Bronte V., Carroll M. W., Goletz T. J., Wang M., Overwijk W. W., Marincola F., Rosenberg S. A., Moss B., Restifo N. P. Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3183–3188. doi: 10.1073/pnas.94.7.3183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carsberg C. J., Myers K. A., Evans G. S., Allen T. D., Stern P. L. Metastasis-associated 5T4 oncofoetal antigen is concentrated at microvillus projections of the plasma membrane. J Cell Sci. 1995 Aug;108(Pt 8):2905–2916. doi: 10.1242/jcs.108.8.2905. [DOI] [PubMed] [Google Scholar]
  5. Carsberg C. J., Myers K. A., Stern P. L. Metastasis-associated 5T4 antigen disrupts cell-cell contacts and induces cellular motility in epithelial cells. Int J Cancer. 1996 Sep 27;68(1):84–92. doi: 10.1002/(SICI)1097-0215(19960927)68:1<84::AID-IJC15>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  6. Forsberg G., Ohlsson L., Brodin T., Björk P., Lando P. A., Shaw D., Stern P. L., Dohlsten M. Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen. Br J Cancer. 2001 Jul 6;85(1):129–136. doi: 10.1054/bjoc.2001.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hole N., Stern P. L. A 72 kD trophoblast glycoprotein defined by a monoclonal antibody. Br J Cancer. 1988 Mar;57(3):239–246. doi: 10.1038/bjc.1988.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hole N., Stern P. L. Isolation and characterization of 5T4, a tumour-associated antigen. Int J Cancer. 1990 Jan 15;45(1):179–184. doi: 10.1002/ijc.2910450132. [DOI] [PubMed] [Google Scholar]
  9. Janosi J. B., Ramsland P. A., Mott M. R., Firth S. M., Baxter R. C., Delhanty P. J. The acid-labile subunit of the serum insulin-like growth factor-binding protein complexes. Structural determination by molecular modeling and electron microscopy. J Biol Chem. 1999 Aug 13;274(33):23328–23332. doi: 10.1074/jbc.274.33.23328. [DOI] [PubMed] [Google Scholar]
  10. Kajava A. V., Vassart G., Wodak S. J. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure. 1995 Sep 15;3(9):867–877. doi: 10.1016/S0969-2126(01)00222-2. [DOI] [PubMed] [Google Scholar]
  11. King K. W., Sheppard F. C., Westwater C., Stern P. L., Myers K. A. Organisation of the mouse and human 5T4 oncofoetal leucine-rich glycoprotein genes and expression in foetal and adult murine tissues. Biochim Biophys Acta. 1999 Jun 9;1445(3):257–270. doi: 10.1016/s0167-4781(99)00055-x. [DOI] [PubMed] [Google Scholar]
  12. Kobe B., Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol. 1995 Jun;5(3):409–416. doi: 10.1016/0959-440x(95)80105-7. [DOI] [PubMed] [Google Scholar]
  13. Kobe B., Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994 Oct;19(10):415–421. doi: 10.1016/0968-0004(94)90090-6. [DOI] [PubMed] [Google Scholar]
  14. Köhler G., Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. doi: 10.1002/eji.1830060713. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lemoine F. J., Marriott S. J. Accelerated G(1) phase progression induced by the human T cell leukemia virus type I (HTLV-I) Tax oncoprotein. J Biol Chem. 2001 Jul 2;276(34):31851–31857. doi: 10.1074/jbc.M105195200. [DOI] [PubMed] [Google Scholar]
  17. Moustakas A., Theodoropoulos P. A., Gravanis A., Häussinger D., Stournaras C. The cytoskeleton in cell volume regulation. Contrib Nephrol. 1998;123:121–134. doi: 10.1159/000059925. [DOI] [PubMed] [Google Scholar]
  18. Mulder W. M., Stern P. L., Stukart M. J., de Windt E., Butzelaar R. M., Meijer S., Adér H. J., Claessen A. M., Vermorken J. B., Meijer C. J. Low intercellular adhesion molecule 1 and high 5T4 expression on tumor cells correlate with reduced disease-free survival in colorectal carcinoma patients. Clin Cancer Res. 1997 Nov;3(11):1923–1930. [PubMed] [Google Scholar]
  19. Myers K. A., Rahi-Saund V., Davison M. D., Young J. A., Cheater A. J., Stern P. L. Isolation of a cDNA encoding 5T4 oncofetal trophoblast glycoprotein. An antigen associated with metastasis contains leucine-rich repeats. J Biol Chem. 1994 Mar 25;269(12):9319–9324. [PubMed] [Google Scholar]
  20. Schliess F., Häussinger D. Cell hydration and insulin signalling. Cell Physiol Biochem. 2000;10(5-6):403–408. doi: 10.1159/000016378. [DOI] [PubMed] [Google Scholar]
  21. Shaw D. M., Embleton M. J., Westwater C., Ryan M. G., Myers K. A., Kingsman S. M., Carroll M. W., Stern P. L. Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4. Biochim Biophys Acta. 2000 Dec 15;1524(2-3):238–246. doi: 10.1016/s0304-4165(00)00165-3. [DOI] [PubMed] [Google Scholar]
  22. Shaw David M., Woods Andrew M., Myers Kevin A., Westwater Caroline, Rahi-Saund Veena, Davies Michael J., Renouf David V., Hounsell Elizabeth F., Stern Peter L. Glycosylation and epitope mapping of the 5T4 glycoprotein oncofoetal antigen. Biochem J. 2002 Apr 1;363(Pt 1):137–145. doi: 10.1042/0264-6021:3630137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Southall P. J., Boxer G. M., Bagshawe K. D., Hole N., Bromley M., Stern P. L. Immunohistological distribution of 5T4 antigen in normal and malignant tissues. Br J Cancer. 1990 Jan;61(1):89–95. doi: 10.1038/bjc.1990.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Starzynska T., Marsh P. J., Schofield P. F., Roberts S. A., Myers K. A., Stern P. L. Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma. Br J Cancer. 1994 May;69(5):899–902. doi: 10.1038/bjc.1994.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Starzynska T., Rahi V., Stern P. L. The expression of 5T4 antigen in colorectal and gastric carcinoma. Br J Cancer. 1992 Nov;66(5):867–869. doi: 10.1038/bjc.1992.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Starzynska T., Wiechowska-Kozlowska A., Marlicz K., Bromley M., Roberts S. A., Lawniczak M., Kolodziej B., Zyluk A., Stern P. L. 5T4 oncofetal antigen in gastric carcinoma and its clinical significance. Eur J Gastroenterol Hepatol. 1998 Jun;10(6):479–484. doi: 10.1097/00042737-199806000-00008. [DOI] [PubMed] [Google Scholar]
  27. Wrigley E., McGown A.T., Rennison J., Swindell R., Crowther D., Starzynska T., Stern P.L. 5T4 oncofetal antigen expression in ovarian carcinoma. Int J Gynecol Cancer. 1995 Jul;5(4):269–274. doi: 10.1046/j.1525-1438.1995.05040269.x. [DOI] [PubMed] [Google Scholar]
  28. Zhande R., Brownsey R. W. Cell volume and the metabolic actions of insulin. Biochem Cell Biol. 1996;74(4):513–522. doi: 10.1139/o96-055. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES