Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):203–209. doi: 10.1042/BJ20020256

Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophages: role of nuclear factor-kappaB in up-regulation.

K Sandeep Prabhu 1, Faith Zamamiri-Davis 1, Jennifer B Stewart 1, Jerry T Thompson 1, Lorraine M Sordillo 1, C Channa Reddy 1
PMCID: PMC1222757  PMID: 12006087

Abstract

The inducible isoform of nitric oxide synthase (iNOS) is implicated in atherosclerosis, malignancy, rheumatoid arthritis, tissue and reperfusion injuries. A key determinant of the pro-oxidant versus protective effects of NO is the underlying redox status of the tissue. Selenoproteins, such as glutathione peroxidases (GPxs) and thioredoxin reductases, are key components of cellular defence and promote optimal antioxidant/oxidant balance. In this study, we have investigated the relationship between Se status, iNOS expression and NO production in Se-deficient and Se-supplemented RAW 264.7 macrophage cell lines. The cellular GPx activity, a measure of Se status, was 17-fold lower in Se-deficient RAW 264.7 cells and the total cellular oxidative tone, as assessed by flow cytometry with 2',7'-dichlorodihydrofluorescein diacetate, was higher in the Se-deficient cells than the Se-supplemented cells. Upon lipopolysaccharide (LPS) stimulation of these cells in culture, we found significantly higher iNOS transcript and protein expression levels with an increase in NO production in Se-deficient RAW 264.7 cells than the Se-supplemented cells. Electrophoretic mobility-shift assays, nuclear factor-kappaB (NF-kappaB)-luciferase reporter assays and Western blot analyses indicate that the increased expression of iNOS in Se deficiency could be due to an increased activation and consequent nuclear localization of the redox-sensitive transcription factor NF-kappaB. These results suggest an inverse relationship between cellular Se status and iNOS expression in LPS-stimulated RAW 264.7 cells and provide evidence for the beneficial effects of dietary Se supplementation in the prevention and/or treatment of oxidative-stress-mediated inflammatory diseases.

Full Text

The Full Text of this article is available as a PDF (203.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderton W. K., Cooper C. E., Knowles R. G. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001 Aug 1;357(Pt 3):593–615. doi: 10.1042/0264-6021:3570593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alfthan G., Neve J. Reference values for serum selenium in various areas-evaluated according to the TRACY protocol. J Trace Elem Med Biol. 1996 Jun;10(2):77–87. doi: 10.1016/S0946-672X(96)80015-0. [DOI] [PubMed] [Google Scholar]
  3. Allan C. B., Lacourciere G. M., Stadtman T. C. Responsiveness of selenoproteins to dietary selenium. Annu Rev Nutr. 1999;19:1–16. doi: 10.1146/annurev.nutr.19.1.1. [DOI] [PubMed] [Google Scholar]
  4. Azoicăi D., Ivan A., Brădăean M., Pavel M., Jerca L., Iacobovici A., Popovici I., Gheorghiţ N. Importanţa utilizării seleniului cu rol antioxidant în prevenţia bolilor cardiovasculare. Rev Med Chir Soc Med Nat Iasi. 1997 Jul-Dec;101(3-4):109–115. [PubMed] [Google Scholar]
  5. Baek S. H., Kwon T. K., Lim J. H., Lee Y. J., Chang H. W., Lee S. J., Kim J. H., Kwun K. B. Secretory phospholipase A2-potentiated inducible nitric oxide synthase expression by macrophages requires NF-kappa B activation. J Immunol. 2000 Jun 15;164(12):6359–6365. doi: 10.4049/jimmunol.164.12.6359. [DOI] [PubMed] [Google Scholar]
  6. Banan A., Fields J. Z., Decker H., Zhang Y., Keshavarzian A. Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction. J Pharmacol Exp Ther. 2000 Sep;294(3):997–1008. [PubMed] [Google Scholar]
  7. Bogdan C., Röllinghoff M., Diefenbach A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol. 2000 Feb;12(1):64–76. doi: 10.1016/s0952-7915(99)00052-7. [DOI] [PubMed] [Google Scholar]
  8. Caivano M., Cohen P. Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. J Immunol. 2000 Mar 15;164(6):3018–3025. doi: 10.4049/jimmunol.164.6.3018. [DOI] [PubMed] [Google Scholar]
  9. Callejas N. A., Casado M., Boscá L., Martín-Sanz P. Requirement of nuclear factor kappaB for the constitutive expression of nitric oxide synthase-2 and cyclooxygenase-2 in rat trophoblasts. J Cell Sci. 1999 Sep;112(Pt 18):3147–3155. doi: 10.1242/jcs.112.18.3147. [DOI] [PubMed] [Google Scholar]
  10. Coleman J. W. Nitric oxide in immunity and inflammation. Int Immunopharmacol. 2001 Aug;1(8):1397–1406. doi: 10.1016/s1567-5769(01)00086-8. [DOI] [PubMed] [Google Scholar]
  11. Combs G. F., Jr Chemopreventive mechanisms of selenium. Med Klin (Munich) 1999 Oct 15;94 (Suppl 3):18–24. doi: 10.1007/BF03042185. [DOI] [PubMed] [Google Scholar]
  12. Han Y. J., Kwon Y. G., Chung H. T., Lee S. K., Simmons R. L., Billiar T. R., Kim Y. M. Antioxidant enzymes suppress nitric oxide production through the inhibition of NF-kappa B activation: role of H(2)O(2) and nitric oxide in inducible nitric oxide synthase expression in macrophages. Nitric Oxide. 2001;5(5):504–513. doi: 10.1006/niox.2001.0367. [DOI] [PubMed] [Google Scholar]
  13. Harper R., Wu K., Chang M. M., Yoneda K., Pan R., Reddy S. P., Wu R. Activation of nuclear factor-kappa b transcriptional activity in airway epithelial cells by thioredoxin but not by N-acetyl-cysteine and glutathione. Am J Respir Cell Mol Biol. 2001 Aug;25(2):178–185. doi: 10.1165/ajrcmb.25.2.4471. [DOI] [PubMed] [Google Scholar]
  14. Hattori Y., Banba N., Gross S. S., Kasai K. Glycated serum albumin-induced nitric oxide production in vascular smooth muscle cells by nuclear factor kappaB-dependent transcriptional activation of inducible nitric oxide synthase. Biochem Biophys Res Commun. 1999 May 27;259(1):128–132. doi: 10.1006/bbrc.1999.0736. [DOI] [PubMed] [Google Scholar]
  15. Holben D. H., Smith A. M. The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc. 1999 Jul;99(7):836–843. doi: 10.1016/S0002-8223(99)00198-4. [DOI] [PubMed] [Google Scholar]
  16. Hutter D., Greene J. J. Influence of the cellular redox state on NF-kappaB-regulated gene expression. J Cell Physiol. 2000 Apr;183(1):45–52. doi: 10.1002/(SICI)1097-4652(200004)183:1<45::AID-JCP6>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  17. Jaiswal M., LaRusso N. F., Gores G. J. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol. 2001 Sep;281(3):G626–G634. doi: 10.1152/ajpgi.2001.281.3.G626. [DOI] [PubMed] [Google Scholar]
  18. Kang J. L., Lee K., Castranova V. Nitric oxide up-regulates DNA-binding activity of nuclear factor-kappaB in macrophages stimulated with silica and inflammatory stimulants. Mol Cell Biochem. 2000 Dec;215(1-2):1–9. doi: 10.1023/a:1026581301366. [DOI] [PubMed] [Google Scholar]
  19. Kim I. Y., Stadtman T. C. Inhibition of NF-kappaB DNA binding and nitric oxide induction in human T cells and lung adenocarcinoma cells by selenite treatment. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12904–12907. doi: 10.1073/pnas.94.24.12904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim P. K., Zamora R., Petrosko P., Billiar T. R. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol. 2001 Aug;1(8):1421–1441. doi: 10.1016/s1567-5769(01)00088-1. [DOI] [PubMed] [Google Scholar]
  21. Knekt P., Heliövaara M., Aho K., Alfthan G., Marniemi J., Aromaa A. Serum selenium, serum alpha-tocopherol, and the risk of rheumatoid arthritis. Epidemiology. 2000 Jul;11(4):402–405. doi: 10.1097/00001648-200007000-00007. [DOI] [PubMed] [Google Scholar]
  22. Liu J. S., Zhao M. L., Brosnan C. F., Lee S. C. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol. 2001 Jun;158(6):2057–2066. doi: 10.1016/S0002-9440(10)64677-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lowenstein C. J., Alley E. W., Raval P., Snowman A. M., Snyder S. H., Russell S. W., Murphy W. J. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9730–9734. doi: 10.1073/pnas.90.20.9730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lüth H. J., Holzer M., Gärtner U., Staufenbiel M., Arendt T. Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Res. 2001 Sep 14;913(1):57–67. doi: 10.1016/s0006-8993(01)02758-5. [DOI] [PubMed] [Google Scholar]
  25. Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
  26. Payne C. M., Bernstein C., Bernstein H., Gerner E. W., Garewal H. Reactive nitrogen species in colon carcinogenesis. Antioxid Redox Signal. 1999 Winter;1(4):449–467. doi: 10.1089/ars.1999.1.4-449. [DOI] [PubMed] [Google Scholar]
  27. Rayman M. P. The importance of selenium to human health. Lancet. 2000 Jul 15;356(9225):233–241. doi: 10.1016/S0140-6736(00)02490-9. [DOI] [PubMed] [Google Scholar]
  28. Schoonbroodt S., Piette J. Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochem Pharmacol. 2000 Oct 15;60(8):1075–1083. doi: 10.1016/s0006-2952(00)00371-3. [DOI] [PubMed] [Google Scholar]
  29. Shinde U. A., Mehta A. A., Goyal R. K. Nitric oxide: a molecule of the millennium. Indian J Exp Biol. 2000 Mar;38(3):201–210. [PubMed] [Google Scholar]
  30. Takeuchi J., Hirota K., Itoh T., Shinkura R., Kitada K., Yodoi J., Namba T., Fukuda K. Thioredoxin inhibits tumor necrosis factor- or interleukin-1-induced NF-kappaB activation at a level upstream of NF-kappaB-inducing kinase. Antioxid Redox Signal. 2000 Spring;2(1):83–92. doi: 10.1089/ars.2000.2.1-83. [DOI] [PubMed] [Google Scholar]
  31. Tanaka T., Nakamura H., Nishiyama A., Hosoi F., Masutani H., Wada H., Yodoi J. Redox regulation by thioredoxin superfamily; protection against oxidative stress and aging. Free Radic Res. 2000 Dec;33(6):851–855. doi: 10.1080/10715760000301361. [DOI] [PubMed] [Google Scholar]
  32. Tetsuka T., Baier L. D., Morrison A. R. Antioxidants inhibit interleukin-1-induced cyclooxygenase and nitric-oxide synthase expression in rat mesangial cells. Evidence for post-transcriptional regulation. J Biol Chem. 1996 May 17;271(20):11689–11693. doi: 10.1074/jbc.271.20.11689. [DOI] [PubMed] [Google Scholar]
  33. Vann L. R., Twitty S., Spiegel S., Milstien S. Divergence in regulation of nitric-oxide synthase and its cofactor tetrahydrobiopterin by tumor necrosis factor-alpha. Ceramide potentiates nitric oxide synthesis without affecting GTP cyclohydrolase I activity. J Biol Chem. 2000 May 5;275(18):13275–13281. doi: 10.1074/jbc.275.18.13275. [DOI] [PubMed] [Google Scholar]
  34. Wang F., Wang L. Y., Wright D., Parmely M. J. Redox imbalance differentially inhibits lipopolysaccharide-induced macrophage activation in the mouse liver. Infect Immun. 1999 Oct;67(10):5409–5416. doi: 10.1128/iai.67.10.5409-5416.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zamamiri-Davis Faith, Lu Ying, Thompson Jerry T., Prabhu K. Sandeep, Reddy Padala V., Sordillo Lorraine M., Reddy C. Channa. Nuclear factor-kappaB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency. Free Radic Biol Med. 2002 May 1;32(9):890–897. doi: 10.1016/s0891-5849(02)00775-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES