Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):187–193. doi: 10.1042/BJ20020264

Phospholipase D1 is threonine-phosphorylated in human-airway epithelial cells stimulated by sphingosine-1-phosphate by a mechanism involving Src tyrosine kinase and protein kinase Cdelta.

Anna Ghelli 1, Anna M Porcelli 1, Annalisa Facchini 1, Silvana Hrelia 1, Flavio Flamigni 1, Michela Rugolo 1
PMCID: PMC1222760  PMID: 12014986

Abstract

The regulatory role of protein kinase C (PKC) delta isoform in the stimulation of phospholipase D (PLD) by sphingosine-1-phosphate (SPP) in a human-airway epithelial cell line (CFNPE9o(-)) was revealed by using antisense oligodeoxynucleotide to PKCdelta, in combination with the specific inhibitor rottlerin. Cell treatment with antisense oligodeoxynucleotide, but not with sense oligodeoxynucleotide, completely eliminated PKCdelta expression and resulted in the strong inhibition of SPP-stimulated phosphatidic acid formation. Indeed, among the PKCalpha, beta, delta, epsilon and zeta isoforms expressed in these cells, only PKCdelta was activated on cell stimulation with SPP, as indicated by translocation into the membrane fraction. Furthermore, pertussis toxin and genistein eliminated both PKCdelta translocation and PLD activation. In particular, a significant reduction in phosphatidylbutanol formation by SPP was observed in the presence of 4-amino-5-(4-methylphenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine (PP1), an inhibitor of Src tyrosine kinase. Furthermore, the activity of Src kinase was slightly increased by SPP and inhibited by PP1. However, the level of PKCdelta tyrosine phosphorylation was not increased in SPP-stimulated cells, suggesting that Src did not directly phosphorylate PKCdelta. Finally, the level of serine phosphorylation of PLD1 and PLD2 isoforms was not changed, whereas the PLD1 isoform alone was threonine-phosphorylated in SPP-treated cells. PLD1 threonine phosphorylation was strongly inhibited by rottlerin, by anti-PKCdelta oligodeoxynucleotide and by PP1. In conclusion, in CFNPE9o(-) cells, SPP interacts with a membrane receptor linked to a G(i) type of G-protein, leading to activation of PLD, probably the PLD1 isoform, by a signalling pathway involving Src and PKCdelta.

Full Text

The Full Text of this article is available as a PDF (282.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avraham H., Park S. Y., Schinkmann K., Avraham S. RAFTK/Pyk2-mediated cellular signalling. Cell Signal. 2000 Mar;12(3):123–133. doi: 10.1016/s0898-6568(99)00076-5. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Cozens A. L., Yezzi M. J., Chin L., Simon E. M., Finkbeiner W. E., Wagner J. A., Gruenert D. C. Characterization of immortal cystic fibrosis tracheobronchial gland epithelial cells. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5171–5175. doi: 10.1073/pnas.89.11.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Exton J. H. Regulation of phospholipase D. Biochim Biophys Acta. 1999 Jul 30;1439(2):121–133. doi: 10.1016/s1388-1981(99)00089-x. [DOI] [PubMed] [Google Scholar]
  5. Fukushima N., Ishii I., Contos J. J., Weiner J. A., Chun J. Lysophospholipid receptors. Annu Rev Pharmacol Toxicol. 2001;41:507–534. doi: 10.1146/annurev.pharmtox.41.1.507. [DOI] [PubMed] [Google Scholar]
  6. Gschwendt M., Kittstein W., Marks F. Elongation factor-2 kinase: effective inhibition by the novel protein kinase inhibitor rottlerin and relative insensitivity towards staurosporine. FEBS Lett. 1994 Jan 24;338(1):85–88. doi: 10.1016/0014-5793(94)80121-5. [DOI] [PubMed] [Google Scholar]
  7. Gschwendt M., Müller H. J., Kielbassa K., Zang R., Kittstein W., Rincke G., Marks F. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun. 1994 Feb 28;199(1):93–98. doi: 10.1006/bbrc.1994.1199. [DOI] [PubMed] [Google Scholar]
  8. Gschwendt M. Protein kinase C delta. Eur J Biochem. 1999 Feb;259(3):555–564. doi: 10.1046/j.1432-1327.1999.00120.x. [DOI] [PubMed] [Google Scholar]
  9. Guo C., Zheng C., Martin-Padura I., Bian Z. C., Guan J. L. Differential stimulation of proline-rich tyrosine kinase 2 and mitogen-activated protein kinase by sphingosine 1-phosphate. Eur J Biochem. 1998 Oct 15;257(2):403–408. doi: 10.1046/j.1432-1327.1998.2570403.x. [DOI] [PubMed] [Google Scholar]
  10. Hammond S. M., Jenco J. M., Nakashima S., Cadwallader K., Gu Q., Cook S., Nozawa Y., Prestwich G. D., Frohman M. A., Morris A. J. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J Biol Chem. 1997 Feb 7;272(6):3860–3868. doi: 10.1074/jbc.272.6.3860. [DOI] [PubMed] [Google Scholar]
  11. Hla T., Lee M. J., Ancellin N., Liu C. H., Thangada S., Thompson B. D., Kluk M. Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? Biochem Pharmacol. 1999 Jul 15;58(2):201–207. doi: 10.1016/s0006-2952(99)00086-6. [DOI] [PubMed] [Google Scholar]
  12. Hornia A., Lu Z., Sukezane T., Zhong M., Joseph T., Frankel P., Foster D. A. Antagonistic effects of protein kinase C alpha and delta on both transformation and phospholipase D activity mediated by the epidermal growth factor receptor. Mol Cell Biol. 1999 Nov;19(11):7672–7680. doi: 10.1128/mcb.19.11.7672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jenco J. M., Rawlingson A., Daniels B., Morris A. J. Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry. 1998 Apr 7;37(14):4901–4909. doi: 10.1021/bi972776r. [DOI] [PubMed] [Google Scholar]
  14. Kim Y., Han J. M., Han B. R., Lee K. A., Kim J. H., Lee B. D., Jang I. H., Suh P. G., Ryu S. H. Phospholipase D1 is phosphorylated and activated by protein kinase C in caveolin-enriched microdomains within the plasma membrane. J Biol Chem. 2000 May 5;275(18):13621–13627. doi: 10.1074/jbc.275.18.13621. [DOI] [PubMed] [Google Scholar]
  15. Kim Y., Han J. M., Park J. B., Lee S. D., Oh Y. S., Chung C., Lee T. G., Kim J. H., Park S. K., Yoo J. S. Phosphorylation and activation of phospholipase D1 by protein kinase C in vivo: determination of multiple phosphorylation sites. Biochemistry. 1999 Aug 10;38(32):10344–10351. doi: 10.1021/bi990579h. [DOI] [PubMed] [Google Scholar]
  16. Kim Y., Kim J. E., Lee S. D., Lee T. G., Kim J. H., Park J. B., Han J. M., Jang S. K., Suh P. G., Ryu S. H. Phospholipase D1 is located and activated by protein kinase C alpha in the plasma membrane in 3Y1 fibroblast cell. Biochim Biophys Acta. 1999 Jan 4;1436(3):319–330. doi: 10.1016/s0005-2760(98)00120-9. [DOI] [PubMed] [Google Scholar]
  17. Liedtke C. M., Cole T. Antisense oligodeoxynucleotide to PKC-delta blocks alpha 1-adrenergic activation of Na-K-2Cl cotransport. Am J Physiol. 1997 Nov;273(5 Pt 1):C1632–C1640. doi: 10.1152/ajpcell.1997.273.5.C1632. [DOI] [PubMed] [Google Scholar]
  18. Liscovitch M., Czarny M., Fiucci G., Tang X. Phospholipase D: molecular and cell biology of a novel gene family. Biochem J. 2000 Feb 1;345(Pt 3):401–415. [PMC free article] [PubMed] [Google Scholar]
  19. Luo J. Q., Liu X., Frankel P., Rotunda T., Ramos M., Flom J., Jiang H., Feig L. A., Morris A. J., Kahn R. A. Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3632–3637. doi: 10.1073/pnas.95.7.3632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marcil J., Harbour D., Naccache P. H., Bourgoin S. Human phospholipase D1 can be tyrosine-phosphorylated in HL-60 granulocytes. J Biol Chem. 1997 Aug 15;272(33):20660–20664. doi: 10.1074/jbc.272.33.20660. [DOI] [PubMed] [Google Scholar]
  21. Meacci E., Vasta V., Donati C., Farnararo M., Bruni P. Receptor-mediated activation of phospholipase D by sphingosine 1-phosphate in skeletal muscle C2C12 cells. A role for protein kinase C. FEBS Lett. 1999 Aug 27;457(2):184–188. doi: 10.1016/s0014-5793(99)01033-9. [DOI] [PubMed] [Google Scholar]
  22. Mellor H., Parker P. J. The extended protein kinase C superfamily. Biochem J. 1998 Jun 1;332(Pt 2):281–292. doi: 10.1042/bj3320281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Min D. S., Exton J. H. Phospholipase D is associated in a phorbol ester-dependent manner with protein kinase C-alpha and with a 220-kDa protein which is phosphorylated on serine and threonine. Biochem Biophys Res Commun. 1998 Jul 30;248(3):533–537. doi: 10.1006/bbrc.1998.8990. [DOI] [PubMed] [Google Scholar]
  24. Mochly-Rosen D., Gordon A. S. Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J. 1998 Jan;12(1):35–42. [PubMed] [Google Scholar]
  25. Orlati S., Porcelli A. M., Hrelia S., Rugolo M. Sphingosylphosphorylcholine and sphingosine-1-phosphate mobilize cytosolic calcium through different mechanisms in human airway epithelial cells. Cell Calcium. 1998 Jun;23(6):387–394. doi: 10.1016/s0143-4160(98)90095-1. [DOI] [PubMed] [Google Scholar]
  26. Orlati S., Porcelli A. M., Hrelia S., Van Brocklyn J. R., Spiegel S., Rugolo M. Sphingosine-1-phosphate activates phospholipase D in human airway epithelial cells via a G protein-coupled receptor. Arch Biochem Biophys. 2000 Mar 1;375(1):69–77. doi: 10.1006/abbi.1999.1589. [DOI] [PubMed] [Google Scholar]
  27. Parmentier J. H., Muthalif M. M., Saeed A. E., Malik K. U. Phospholipase D activation by norepinephrine is mediated by 12(s)-, 15(s)-, and 20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolic phospholipase a2. tyrosine phosphorylation of phospholipase d2 in response to norepinephrine. J Biol Chem. 2001 Feb 7;276(19):15704–15711. doi: 10.1074/jbc.M011473200. [DOI] [PubMed] [Google Scholar]
  28. Pessino A., Passalacqua M., Sparatore B., Patrone M., Melloni E., Pontremoli S. Antisense oligodeoxynucleotide inhibition of delta protein kinase C expression accelerates induced differentiation of murine erythroleukaemia cells. Biochem J. 1995 Dec 1;312(Pt 2):549–554. doi: 10.1042/bj3120549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Porcelli Anna M., Ghelli Anna, Hrelia Silvana, Rugolo Michela. Phospholipase D stimulation is required for sphingosine-1-phosphate activation of actin stress fibre assembly in human airway epithelial cells. Cell Signal. 2002 Jan;14(1):75–81. doi: 10.1016/s0898-6568(01)00222-4. [DOI] [PubMed] [Google Scholar]
  30. Pyne S., Pyne N. J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J. 2000 Jul 15;349(Pt 2):385–402. doi: 10.1042/0264-6021:3490385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rakhit S., Conway A. M., Tate R., Bower T., Pyne N. J., Pyne S. Sphingosine 1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle. Role of endothelial differentiation gene 1, c-Src tyrosine kinase and phosphoinositide 3-kinase. Biochem J. 1999 Mar 15;338(Pt 3):643–649. [PMC free article] [PubMed] [Google Scholar]
  32. Repp H., Birringer J., Koschinski A., Dreyer F. Activation of a Ca2+-dependent K+ current in mouse fibroblasts by sphingosine-1-phosphate involves the protein tyrosine kinase c-Src. Naunyn Schmiedebergs Arch Pharmacol. 2001 Mar;363(3):295–301. doi: 10.1007/s002100000362. [DOI] [PubMed] [Google Scholar]
  33. Sah V. P., Seasholtz T. M., Sagi S. A., Brown J. H. The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol. 2000;40:459–489. doi: 10.1146/annurev.pharmtox.40.1.459. [DOI] [PubMed] [Google Scholar]
  34. Shanmugam M., Krett N. L., Peters C. A., Maizels E. T., Murad F. M., Kawakatsu H., Rosen S. T., Hunzicker-Dunn M. Association of PKC delta and active Src in PMA-treated MCF-7 human breast cancer cells. Oncogene. 1998 Apr 2;16(13):1649–1654. doi: 10.1038/sj.onc.1201684. [DOI] [PubMed] [Google Scholar]
  35. Siddiqi A. R., Srajer G. E., Leslie C. C. Regulation of human PLD1 and PLD2 by calcium and protein kinase C. Biochim Biophys Acta. 2000 Jun 2;1497(1):103–114. doi: 10.1016/s0167-4889(00)00049-5. [DOI] [PubMed] [Google Scholar]
  36. Spiegel S., Milstien S. Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 2000 Jun 30;476(1-2):55–57. doi: 10.1016/s0014-5793(00)01670-7. [DOI] [PubMed] [Google Scholar]
  37. Wang D. A., Lorincz Z., Bautista D. L., Liliom K., Tigyi G., Parrill A. L. A single amino acid determines lysophospholipid specificity of the S1P1 (EDG1) and LPA1 (EDG2) phospholipid growth factor receptors. J Biol Chem. 2001 Oct 16;276(52):49213–49220. doi: 10.1074/jbc.M107301200. [DOI] [PubMed] [Google Scholar]
  38. Zhang Y., Altshuller Y. M., Hammond S. M., Hayes F., Morris A. J., Frohman M. A. Loss of receptor regulation by a phospholipase D1 mutant unresponsive to protein kinase C. EMBO J. 1999 Nov 15;18(22):6339–6348. doi: 10.1093/emboj/18.22.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES