Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):299–306. doi: 10.1042/BJ20011749

Hypoxia/reoxygenation induction of monocyte chemoattractant protein-1 in melanoma cells: involvement of nuclear factor-kappaB, stimulatory protein-1 transcription factors and mitogen-activated protein kinase pathways.

Manfred Kunz 1, Gisela Bloss 1, Reinhard Gillitzer 1, Gerd Gross 1, Matthias Goebeler 1, Ulf R Rapp 1, Stephan Ludwig 1
PMCID: PMC1222766  PMID: 12020348

Abstract

Monocyte chemoattractant protein-1 (MCP-1) expression is found in malignant melanoma and melanoma metastases. Since areas of hypoxia/reoxygenation (H/R) are a common feature of malignant tumours and metastases, we addressed the question whether melanoma cells produce MCP-1 upon exposure to H/R. In the present study, we show that melanoma cells up-regulate MCP-1 mRNA and protein under H/R. By means of reporter gene analysis, we further demonstrate that H/R induces transcriptional activation of the MCP-1 promoter carrying a stimulatory protein-1 (SP1) and two nuclear factor-kappaB (NF-kappaB) binding motifs. Accordingly, H/R-stimulated melanoma cells showed enhanced binding activity of both transcription factors NF-kappaB and SP1 in electrophoretic mobility-shift assay. A common upstream activator of NF-kappaB, inhibitory kappaBalpha kinase, was not significantly activated under H/R conditions. Further analysis of upstream signalling events revealed that members of the mitogen-activated protein kinases family, namely extracellular signal-regulated protein kinase, c-Jun N-terminal kinase/ stress-activated protein kinase and p38 stress kinase, may be involved in MCP-1 transcriptional regulation under H/R. In summary, we conclude that H/R induces MCP-1 production in melanoma cells via the co-operative action of both transcription factors NF-kappaB and SP1, and involves mitogen-activated protein kinase signalling pathways. Functionally, H/R-induced MCP-1 production may contribute to tumour progression by committing selective pressure on tumour cells via chemoattraction and activation of tumour-infiltrating monocytes/macrophages.

Full Text

The Full Text of this article is available as a PDF (204.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baggiolini M., Dewald B., Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705. doi: 10.1146/annurev.immunol.15.1.675. [DOI] [PubMed] [Google Scholar]
  2. Beavon I. R. Regulation of E-cadherin: does hypoxia initiate the metastatic cascade? Mol Pathol. 1999 Aug;52(4):179–188. doi: 10.1136/mp.52.4.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker J. C., thor Straten I. T-cell clonality in immune responses. Immunol Today. 2000 Feb;21(2):107–107. doi: 10.1016/s0167-5699(99)01532-7. [DOI] [PubMed] [Google Scholar]
  4. Bottazzi B., Walter S., Govoni D., Colotta F., Mantovani A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J Immunol. 1992 Feb 15;148(4):1280–1285. [PubMed] [Google Scholar]
  5. Brinckerhoff L. H., Thompson L. W., Slingluff C. L., Jr Melanoma vaccines. Curr Opin Oncol. 2000 Mar;12(2):163–173. doi: 10.1097/00001622-200003000-00012. [DOI] [PubMed] [Google Scholar]
  6. Chaplin D. J., Hill S. A., Bell K. M., Tozer G. M. Modification of tumor blood flow: current status and future directions. Semin Radiat Oncol. 1998 Jul;8(3):151–163. doi: 10.1016/s1053-4296(98)80041-6. [DOI] [PubMed] [Google Scholar]
  7. Dachs G. U., Patterson A. V., Firth J. D., Ratcliffe P. J., Townsend K. M., Stratford I. J., Harris A. L. Targeting gene expression to hypoxic tumor cells. Nat Med. 1997 May;3(5):515–520. doi: 10.1038/nm0597-515. [DOI] [PubMed] [Google Scholar]
  8. DeRisi J., Penland L., Brown P. O., Bittner M. L., Meltzer P. S., Ray M., Chen Y., Su Y. A., Trent J. M. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996 Dec;14(4):457–460. doi: 10.1038/ng1296-457. [DOI] [PubMed] [Google Scholar]
  9. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finzer P., Soto U., Delius H., Patzelt A., Coy J. F., Poustka A., zur Hausen H., Rösl F. Differential transcriptional regulation of the monocyte-chemoattractant protein-1 (MCP-1) gene in tumorigenic and non-tumorigenic HPV 18 positive cells: the role of the chromatin structure and AP-1 composition. Oncogene. 2000 Jul 6;19(29):3235–3244. doi: 10.1038/sj.onc.1203643. [DOI] [PubMed] [Google Scholar]
  11. Ghosh S., May M. J., Kopp E. B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225–260. doi: 10.1146/annurev.immunol.16.1.225. [DOI] [PubMed] [Google Scholar]
  12. Goebeler M., Gillitzer R., Kilian K., Utzel K., Bröcker E. B., Rapp U. R., Ludwig S. Multiple signaling pathways regulate NF-kappaB-dependent transcription of the monocyte chemoattractant protein-1 gene in primary endothelial cells. Blood. 2001 Jan 1;97(1):46–55. doi: 10.1182/blood.v97.1.46. [DOI] [PubMed] [Google Scholar]
  13. Graves D. T., Barnhill R., Galanopoulos T., Antoniades H. N. Expression of monocyte chemotactic protein-1 in human melanoma in vivo. Am J Pathol. 1992 Jan;140(1):9–14. [PMC free article] [PubMed] [Google Scholar]
  14. Gu L., Tseng S. C., Rollins B. J. Monocyte chemoattractant protein-1. Chem Immunol. 1999;72:7–29. doi: 10.1159/000058723. [DOI] [PubMed] [Google Scholar]
  15. Hefler L., Tempfer C., Heinze G., Mayerhofer K., Breitenecker G., Leodolter S., Reinthaller A., Kainz C. Monocyte chemoattractant protein-1 serum levels in ovarian cancer patients. Br J Cancer. 1999 Nov;81(5):855–859. doi: 10.1038/sj.bjc.6690776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoffmeyer A., Grosse-Wilde A., Flory E., Neufeld B., Kunz M., Rapp U. R., Ludwig S. Different mitogen-activated protein kinase signaling pathways cooperate to regulate tumor necrosis factor alpha gene expression in T lymphocytes. J Biol Chem. 1999 Feb 12;274(7):4319–4327. doi: 10.1074/jbc.274.7.4319. [DOI] [PubMed] [Google Scholar]
  17. Imbert V., Rupec R. A., Livolsi A., Pahl H. L., Traenckner E. B., Mueller-Dieckmann C., Farahifar D., Rossi B., Auberger P., Baeuerle P. A. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell. 1996 Sep 6;86(5):787–798. doi: 10.1016/s0092-8674(00)80153-1. [DOI] [PubMed] [Google Scholar]
  18. Kelly J. W., Sagebiel R. W., Blois M. S. Regression in malignant melanoma. A histologic feature without independent prognostic significance. Cancer. 1985 Nov 1;56(9):2287–2291. doi: 10.1002/1097-0142(19851101)56:9<2287::aid-cncr2820560924>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  19. Kunz M., Hartmann A., Flory E., Toksoy A., Koczan D., Thiesen H. J., Mukaida N., Neumann M., Rapp U. R., Bröcker E. B. Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma. A potential mechanism for high tumor aggressiveness. Am J Pathol. 1999 Sep;155(3):753–763. doi: 10.1016/S0002-9440(10)65174-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kunz M., Toksoy A., Goebeler M., Engelhardt E., Bröcker E., Gillitzer R. Strong expression of the lymphoattractant C-X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J Pathol. 1999 Dec;189(4):552–558. doi: 10.1002/(SICI)1096-9896(199912)189:4<552::AID-PATH469>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  21. Ludwig S., Hoffmeyer A., Goebeler M., Kilian K., Häfner H., Neufeld B., Han J., Rapp U. R. The stress inducer arsenite activates mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 via a MAPK kinase 6/p38-dependent pathway. J Biol Chem. 1998 Jan 23;273(4):1917–1922. doi: 10.1074/jbc.273.4.1917. [DOI] [PubMed] [Google Scholar]
  22. Mantovani A., Bottazzi B., Colotta F., Sozzani S., Ruco L. The origin and function of tumor-associated macrophages. Immunol Today. 1992 Jul;13(7):265–270. doi: 10.1016/0167-5699(92)90008-U. [DOI] [PubMed] [Google Scholar]
  23. Negus R. P., Turner L., Burke F., Balkwill F. R. Hypoxia down-regulates MCP-1 expression: implications for macrophage distribution in tumors. J Leukoc Biol. 1998 Jun;63(6):758–765. doi: 10.1002/jlb.63.6.758. [DOI] [PubMed] [Google Scholar]
  24. Nesbit M., Schaider H., Miller T. H., Herlyn M. Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol. 2001 Jun 1;166(11):6483–6490. doi: 10.4049/jimmunol.166.11.6483. [DOI] [PubMed] [Google Scholar]
  25. Neumark E., Anavi R., Witz I. P., Ben-Baruch A. MCP-1 expression as a potential contributor to the high malignancy phenotype of murine mammary adenocarcinoma cells. Immunol Lett. 1999 May 3;68(1):141–146. doi: 10.1016/s0165-2478(99)00043-7. [DOI] [PubMed] [Google Scholar]
  26. Nokihara H., Nishioka Y., Yano S., Mukaida N., Matsushima K., Tsuruo T., Sone S. Monocyte chemoattractant protein-1 gene modification of multidrug-resistant human lung cancer enhances antimetastatic effect of therapy with anti-P-glycoprotein antibody in SCID mice. Int J Cancer. 1999 Mar 1;80(5):773–780. doi: 10.1002/(sici)1097-0215(19990301)80:5<773::aid-ijc23>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  27. Ping D., Boekhoudt G., Zhang F., Morris A., Philipsen S., Warren S. T., Boss J. M. Sp1 binding is critical for promoter assembly and activation of the MCP-1 gene by tumor necrosis factor. J Biol Chem. 2000 Jan 21;275(3):1708–1714. doi: 10.1074/jbc.275.3.1708. [DOI] [PubMed] [Google Scholar]
  28. Rigel D. S. Malignant melanoma: incidence issues and their effect on diagnosis and treatment in the 1990s. Mayo Clin Proc. 1997 Apr;72(4):367–371. doi: 10.4065/72.4.367. [DOI] [PubMed] [Google Scholar]
  29. Rollins B. J., Sunday M. E. Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol Cell Biol. 1991 Jun;11(6):3125–3131. doi: 10.1128/mcb.11.6.3125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rupec R. A., Baeuerle P. A. The genomic response of tumor cells to hypoxia and reoxygenation. Differential activation of transcription factors AP-1 and NF-kappa B. Eur J Biochem. 1995 Dec 1;234(2):632–640. doi: 10.1111/j.1432-1033.1995.632_b.x. [DOI] [PubMed] [Google Scholar]
  31. Rösl F., Lengert M., Albrecht J., Kleine K., Zawatzky R., Schraven B., zur Hausen H. Differential regulation of the JE gene encoding the monocyte chemoattractant protein (MCP-1) in cervical carcinoma cells and derived hybrids. J Virol. 1994 Apr;68(4):2142–2150. doi: 10.1128/jvi.68.4.2142-2150.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schmitz M. L., Bacher S., Kracht M. I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem Sci. 2001 Mar;26(3):186–190. doi: 10.1016/s0968-0004(00)01753-9. [DOI] [PubMed] [Google Scholar]
  33. Seymour K., Pettit S., O'Flaherty E., Charnley R. M., Kirby J. A. Selection of metastatic tumour phenotypes by host immune systems. Lancet. 1999 Dec 4;354(9194):1989–1991. doi: 10.1016/s0140-6736(99)04435-9. [DOI] [PubMed] [Google Scholar]
  34. Ueda A., Ishigatsubo Y., Okubo T., Yoshimura T. Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J Biol Chem. 1997 Dec 5;272(49):31092–31099. doi: 10.1074/jbc.272.49.31092. [DOI] [PubMed] [Google Scholar]
  35. Ueda A., Okuda K., Ohno S., Shirai A., Igarashi T., Matsunaga K., Fukushima J., Kawamoto S., Ishigatsubo Y., Okubo T. NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol. 1994 Sep 1;153(5):2052–2063. [PubMed] [Google Scholar]
  36. Ueno T., Toi M., Saji H., Muta M., Bando H., Kuroi K., Koike M., Inadera H., Matsushima K. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000 Aug;6(8):3282–3289. [PubMed] [Google Scholar]
  37. Westphal J. R., van't Hullenaar R. G., van der Laak J. A., Cornelissen I. M., Schalkwijk L. J., van Muijen G. N., Wesseling P., de Wilde P. C., Ruiter D. J., de Waal R. M. Vascular density in melanoma xenografts correlates with vascular permeability factor expression but not with metastatic potential. Br J Cancer. 1997;76(5):561–570. doi: 10.1038/bjc.1997.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Xu Q., Ji Y. S., Schmedtje J. F., Jr Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure. J Biol Chem. 2000 Aug 11;275(32):24583–24589. doi: 10.1074/jbc.M003894200. [DOI] [PubMed] [Google Scholar]
  39. Yoshimura T., Yuhki N., Moore S. K., Appella E., Lerman M. I., Leonard E. J. Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett. 1989 Feb 27;244(2):487–493. doi: 10.1016/0014-5793(89)80590-3. [DOI] [PubMed] [Google Scholar]
  40. Young S. D., Marshall R. S., Hill R. P. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9533–9537. doi: 10.1073/pnas.85.24.9533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van Muijen G. N., Jansen K. F., Cornelissen I. M., Smeets D. F., Beck J. L., Ruiter D. J. Establishment and characterization of a human melanoma cell line (MV3) which is highly metastatic in nude mice. Int J Cancer. 1991 Apr 22;48(1):85–91. doi: 10.1002/ijc.2910480116. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES