Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):255–263. doi: 10.1042/BJ20020431

The inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase by macrocyclic lactones and cyclosporin A.

Jonathan G Bilmen 1, Laura L Wootton 1, Francesco Michelangeli 1
PMCID: PMC1222768  PMID: 12022919

Abstract

The pharmacology of macrocyclic lactones is varied, with many beneficial effects in treating disease processes. FK-506, rapamycin and ascomycin have been utilized as immunosuppressant agents. Ivermectin is typically used to treat parasitic worm infections in mammals. Another immunosuppressant, cyclosporin A, is a cyclic oligotide that has similar immunosuppressant properties to those exerted by macrocyclic lactones. Here we report on the inhibition by these compounds of sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase (SERCA) Ca(2+) pumps. Ivermectin, cyclosporin A and rapamycin all inhibited the skeletal muscle sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1). In addition, although ivermectin inhibited brain microsomal endoplasmic reticulum (type 2b) Ca(2+)-ATPase, cyclosporin A and rapamycin did not. As cyclosporin A also did not inhibit cardiac Ca(2+)-ATPase activity, this would suggest that it could be an isoform-specific inhibitor. Ivermectin was shown to be the most potent Ca(2+)-ATPase inhibitor of the macrocyclic lactones (IC(50)=7 microM). It appears to show a 'competitive' inhibition with respect to high concentrations of ATP by increasing the regulatory binding site K(m) but without affecting the catalytic site K(m). In addition, ivermectin stabilizes the ATPase in an E1 conformational state, and inhibits Ca(2+) release from the enzyme during turnover. This would suggest that ivermectin inhibits Ca(2+) release from the luminal binding sites of the phosphoenzyme intermediate, a step that is known to be accelerated by high [ATP].

Full Text

The Full Text of this article is available as a PDF (178.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelsberger H., Lepier A., Dudel J. Activation of rat recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptor by the insecticide ivermectin. Eur J Pharmacol. 2000 Apr 14;394(2-3):163–170. doi: 10.1016/s0014-2999(00)00164-3. [DOI] [PubMed] [Google Scholar]
  2. Ahern G. P., Junankar P. R., Pace S. M., Curtis S., Mould J. A., Dulhunty A. F. Effects of ivermectin and midecamycin on ryanodine receptors and the Ca2+-ATPase in sarcoplasmic reticulum of rabbit and rat skeletal muscle. J Physiol. 1999 Jan 15;514(Pt 2):313–326. doi: 10.1111/j.1469-7793.1999.313ae.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilmen J. G., Khan S. Z., Javed M. H., Michelangeli F. Inhibition of the SERCA Ca2+ pumps by curcumin. Curcumin putatively stabilizes the interaction between the nucleotide-binding and phosphorylation domains in the absence of ATP. Eur J Biochem. 2001 Dec;268(23):6318–6327. doi: 10.1046/j.0014-2956.2001.02589.x. [DOI] [PubMed] [Google Scholar]
  4. Brown G. R., Benyon S. L., Kirk C. J., Wictome M., East J. M., Lee A. G., Michelangeli F. Characterisation of a novel Ca2+ pump inhibitor (bis-phenol) and its effects on intracellular Ca2+ mobilization. Biochim Biophys Acta. 1994 Nov 2;1195(2):252–258. doi: 10.1016/0005-2736(94)90264-x. [DOI] [PubMed] [Google Scholar]
  5. Bultynck G., De Smet P., Rossi D., Callewaert G., Missiaen L., Sorrentino V., De Smedt H., Parys J. B. Characterization and mapping of the 12 kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor. Biochem J. 2001 Mar 1;354(Pt 2):413–422. doi: 10.1042/0264-6021:3540413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bultynck G., De Smet P., Weidema A. F., Ver Heyen M., Maes K., Callewaert G., Missiaen L., Parys J. B., De Smedt H. Effects of the immunosuppressant FK506 on intracellular Ca2+ release and Ca2+ accumulation mechanisms. J Physiol. 2000 Jun 15;525(Pt 3):681–693. doi: 10.1111/j.1469-7793.2000.t01-1-00681.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell W. C. Ivermectin as an antiparasitic agent for use in humans. Annu Rev Microbiol. 1991;45:445–474. doi: 10.1146/annurev.mi.45.100191.002305. [DOI] [PubMed] [Google Scholar]
  8. Chabala J. C., Mrozik H., Tolman R. L., Eskola P., Lusi A., Peterson L. H., Woods M. F., Fisher M. H., Campbell W. C., Egerton J. R. Ivermectin, a new broad-spectrum antiparasitic agent. J Med Chem. 1980 Oct;23(10):1134–1136. doi: 10.1021/jm00184a014. [DOI] [PubMed] [Google Scholar]
  9. Champeil P., Guillain F. Rapid filtration study of the phosphorylation-dependent dissociation of calcium from transport sites of purified sarcoplasmic reticulum ATPase and ATP modulation of the catalytic cycle. Biochemistry. 1986 Nov 18;25(23):7623–7633. doi: 10.1021/bi00371a053. [DOI] [PubMed] [Google Scholar]
  10. Champeil P., Riollet S., Orlowski S., Guillain F., Seebregts C. J., McIntosh D. B. ATP regulation of sarcoplasmic reticulum Ca2+-ATPase. Metal-free ATP and 8-bromo-ATP bind with high affinity to the catalytic site of phosphorylated ATPase and accelerate dephosphorylation. J Biol Chem. 1988 Sep 5;263(25):12288–12294. [PubMed] [Google Scholar]
  11. Coll R. J., Murphy A. J. Affinity of nucleotides for the active site of detergent-solubilized sarcoplasmic reticulum CaATPase. Biochem Biophys Res Commun. 1986 Jul 31;138(2):652–658. doi: 10.1016/s0006-291x(86)80546-0. [DOI] [PubMed] [Google Scholar]
  12. Coll R. J., Murphy A. J. Kinetic evidence for two nucleotide binding sites on the CaATPase of sarcoplasmic reticulum. Biochemistry. 1991 Feb 12;30(6):1456–1461. doi: 10.1021/bi00220a002. [DOI] [PubMed] [Google Scholar]
  13. Conde M., Andrade J., Bedoya F. J., Santa Maria C., Sobrino F. Inhibitory effect of cyclosporin A and FK506 on nitric oxide production by cultured macrophages. Evidence of a direct effect on nitric oxide synthase activity. Immunology. 1995 Mar;84(3):476–481. [PMC free article] [PubMed] [Google Scholar]
  14. Frapier J. M., Choby C., Mangoni M. E., Nargeot J., Albat B., Richard S. Cyclosporin A increases basal intracellular calcium and calcium responses to endothelin and vasopressin in human coronary myocytes. FEBS Lett. 2001 Mar 23;493(1):57–62. doi: 10.1016/s0014-5793(01)02269-4. [DOI] [PubMed] [Google Scholar]
  15. Fruman D. A., Klee C. B., Bierer B. E., Burakoff S. J. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3686–3690. doi: 10.1073/pnas.89.9.3686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galina A., de Meis L. Ca2+ translocation and catalytic activity of the sarcoplasmic reticulum ATPase. Modulation by ATP, Ca2+, and Pi. J Biol Chem. 1991 Sep 25;266(27):17978–17982. [PubMed] [Google Scholar]
  17. Gould G. W., East J. M., Froud R. J., McWhirter J. M., Stefanova H. I., Lee A. G. A kinetic model for the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Biochem J. 1986 Jul 1;237(1):217–227. doi: 10.1042/bj2370217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Griffiths C. E. Ascomycin: an advance in the management of atopic dermatitis. Br J Dermatol. 2001 Apr;144(4):679–681. doi: 10.1046/j.1365-2133.2001.144004679.x. [DOI] [PubMed] [Google Scholar]
  19. Groblewski G. E., Wagner A. C., Williams J. A. Cyclosporin A inhibits Ca2+/calmodulin-dependent protein phosphatase and secretion in pancreatic acinar cells. J Biol Chem. 1994 May 27;269(21):15111–15117. [PubMed] [Google Scholar]
  20. Hughes G., Starling A. P., East J. M., Lee A. G. Mechanism of inhibition of the Ca(2+)-ATPase by spermine and other polycationic compounds. Biochemistry. 1994 Apr 26;33(16):4745–4754. doi: 10.1021/bi00182a001. [DOI] [PubMed] [Google Scholar]
  21. Hughes P. J., McLellan H., Lowes D. A., Kahn S. Z., Bilmen J. G., Tovey S. C., Godfrey R. E., Michell R. H., Kirk C. J., Michelangeli F. Estrogenic alkylphenols induce cell death by inhibiting testis endoplasmic reticulum Ca(2+) pumps. Biochem Biophys Res Commun. 2000 Nov 2;277(3):568–574. doi: 10.1006/bbrc.2000.3710. [DOI] [PubMed] [Google Scholar]
  22. Krause R. M., Buisson B., Bertrand S., Corringer P. J., Galzi J. L., Changeux J. P., Bertrand D. Ivermectin: a positive allosteric effector of the alpha7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol. 1998 Feb;53(2):283–294. doi: 10.1124/mol.53.2.283. [DOI] [PubMed] [Google Scholar]
  23. Longland C. L., Mezna M., Langel U., Hällbrink M., Soomets U., Wheatley M., Michelangeli F., Howl J. Biochemical mechanisms of calcium mobilisation induced by mastoparan and chimeric hormone-mastoparan constructs. Cell Calcium. 1998 Jul;24(1):27–34. doi: 10.1016/s0143-4160(98)90086-0. [DOI] [PubMed] [Google Scholar]
  24. Longland C. L., Mezna M., Michelangeli F. The mechanism of inhibition of the Ca2+-ATPase by mastoparan. Mastoparan abolishes cooperative ca2+ binding. J Biol Chem. 1999 May 21;274(21):14799–14805. doi: 10.1074/jbc.274.21.14799. [DOI] [PubMed] [Google Scholar]
  25. Lovell R. A. Ivermectin and piperazine toxicoses in dogs and cats. Vet Clin North Am Small Anim Pract. 1990 Mar;20(2):453–468. doi: 10.1016/s0195-5616(90)50038-8. [DOI] [PubMed] [Google Scholar]
  26. Lytton J., Westlin M., Burk S. E., Shull G. E., MacLennan D. H. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem. 1992 Jul 15;267(20):14483–14489. [PubMed] [Google Scholar]
  27. Michelangeli F., Colyer J., East J. M., Lee A. G. Effect of pH on the activity of the Ca2+ + Mg2(+)-activated ATPase of sarcoplasmic reticulum. Biochem J. 1990 Apr 15;267(2):423–429. doi: 10.1042/bj2670423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Michelangeli F., Munkonge F. M. Methods of reconstitution of the purified sarcoplasmic reticulum (Ca(2+)-Mg2+)-ATPase using bile salt detergents to form membranes of defined lipid to protein ratios or sealed vesicles. Anal Biochem. 1991 May 1;194(2):231–236. doi: 10.1016/0003-2697(91)90223-g. [DOI] [PubMed] [Google Scholar]
  29. Michelangeli F., Orlowski S., Champeil P., East J. M., Lee A. G. Mechanism of inhibition of the (Ca2(+)-Mg2+)-ATPase by nonylphenol. Biochemistry. 1990 Mar 27;29(12):3091–3101. doi: 10.1021/bi00464a028. [DOI] [PubMed] [Google Scholar]
  30. Myung J., Jencks W. P. There is only one phosphoenzyme intermediate with bound calcium on the reaction pathway of the sarcoplasmic reticulum calcium ATPase. Biochemistry. 1995 Mar 7;34(9):3077–3083. doi: 10.1021/bi00009a039. [DOI] [PubMed] [Google Scholar]
  31. Percival A. L., Williams A. J., Kenyon J. L., Grinsell M. M., Airey J. A., Sutko J. L. Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties. Biophys J. 1994 Nov;67(5):1834–1850. doi: 10.1016/S0006-3495(94)80665-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sigal N. H., Lin C. S., Siekierka J. J. Inhibition of human T-cell activation by FK 506, rapamycin, and cyclosporine A. Transplant Proc. 1991 Apr;23(2 Suppl 2):1–5. [PubMed] [Google Scholar]
  33. Thomson A. W., Woo J. Immunosuppressive properties of FK-506 and rapamycin. Lancet. 1989 Aug 19;2(8660):443–444. doi: 10.1016/s0140-6736(89)90616-8. [DOI] [PubMed] [Google Scholar]
  34. Tovey S. C., Dyer J. L., Godfrey R. E., Khan S. Z., Bilmen J. G., Mezna M., Michelangeli F. Subtype identification and functional properties of inositol 1,4, 5-trisphosphate receptors in heart and aorta. Pharmacol Res. 2000 Dec;42(6):581–590. doi: 10.1006/phrs.2000.0733. [DOI] [PubMed] [Google Scholar]
  35. Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
  36. Van Duyne G. D., Standaert R. F., Karplus P. A., Schreiber S. L., Clardy J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol. 1993 Jan 5;229(1):105–124. doi: 10.1006/jmbi.1993.1012. [DOI] [PubMed] [Google Scholar]
  37. Vassilatis D. K., Arena J. P., Plasterk R. H., Wilkinson H. A., Schaeffer J. M., Cully D. F., Van der Ploeg L. H. Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in Caenorhabditis elegans. Isolation and characterization. J Biol Chem. 1997 Dec 26;272(52):33167–33174. doi: 10.1074/jbc.272.52.33167. [DOI] [PubMed] [Google Scholar]
  38. Wicker L. S., Boltz R. C., Jr, Matt V., Nichols E. A., Peterson L. B., Sigal N. H. Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur J Immunol. 1990 Oct;20(10):2277–2283. doi: 10.1002/eji.1830201017. [DOI] [PubMed] [Google Scholar]
  39. Wu K. D., Lee W. S., Wey J., Bungard D., Lytton J. Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts. Am J Physiol. 1995 Sep;269(3 Pt 1):C775–C784. doi: 10.1152/ajpcell.1995.269.3.C775. [DOI] [PubMed] [Google Scholar]
  40. de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES