Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):35–43. doi: 10.1042/BJ20020437

Cytotoxic potency of cardiotoxin from Naja sputatrix: development of a new cytolytic assay.

Donghui Ma 1, Arunmozhiarasi Armugam 1, Kandiah Jeyaseelan 1
PMCID: PMC1222773  PMID: 12027804

Abstract

The possible involvement of specific regions/loops of cardiotoxin from Naja sputatrix venom in mediating its cytolytic activity is evaluated using a new cytolytic assay. In this assay, the amount of chloramphenicol acetyltransferase (CAT) that is released upon lysis of the cellular membranes by the cytotoxin has been measured as an index of cytolysis. This newly developed CAT system is more sensitive than the traditional haemolysis method utilizing red blood cells or the lactate dehydrogenase assay for cytolysis. Series of chimaeric toxin molecules have been constructed by swapping the loops between highly hydrophilic neurotoxin and highly hydrophobic cardiotoxin molecules from Naja sputatrix, which are known to exhibit structural similarity (three-finger conformation) but to have different functional properties. Comparison of the cytolytic activities of the recombinant chimaeric toxins demonstrated the possible involvement of all three loops of cardiotoxin in its cytolytic potency. However, the first two loops of the protein appear to make the major contribution to its lytic activity. cDNAs encoding cardiotoxin and the chimaeric toxins, when expressed in transfected cultured Chinese hamster ovary cells, resulted in cell lysis, indicating that these cDNAs can be developed as useful cytolytic agents.

Full Text

The Full Text of this article is available as a PDF (303.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann E. J., Taylor P. Nonidentity of the alpha-neurotoxin binding sites on the nicotinic acetylcholine receptor revealed by modification in alpha-neurotoxin and receptor structures. Biochemistry. 1997 Oct 21;36(42):12836–12844. doi: 10.1021/bi971513u. [DOI] [PubMed] [Google Scholar]
  2. Afifiyan F., Armugam A., Gopalakrishnakone P., Tan N. H., Tan C. H., Jeyaseelan K. Four new postsynaptic neurotoxins from Naja naja sputatrix venom: cDNA cloning, protein expression, and phylogenetic analysis. Toxicon. 1998 Dec;36(12):1871–1885. doi: 10.1016/s0041-0101(98)00108-1. [DOI] [PubMed] [Google Scholar]
  3. Albrand J. P., Blackledge M. J., Pascaud F., Hollecker M., Marion D. NMR and restrained molecular dynamics study of the three-dimensional solution structure of toxin FS2, a specific blocker of the L-type calcium channel, isolated from black mamba venom. Biochemistry. 1995 May 2;34(17):5923–5937. doi: 10.1021/bi00017a022. [DOI] [PubMed] [Google Scholar]
  4. Andrade M. A., Chacón P., Merelo J. J., Morán F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. 1993 Jun;6(4):383–390. doi: 10.1093/protein/6.4.383. [DOI] [PubMed] [Google Scholar]
  5. Borkow G., Ovadia M. Selective lysis of virus-infected cells by cobra snake cytotoxins: A sendai virus, human erythrocytes, and cytotoxin model. Biochem Biophys Res Commun. 1999 Oct 14;264(1):63–68. doi: 10.1006/bbrc.1999.1483. [DOI] [PubMed] [Google Scholar]
  6. Brown L. R., Wüthrich K. Nuclear magnetic resonance solution structure of the alpha-neurotoxin from the black mamba (Dendroaspis polylepis polylepis). J Mol Biol. 1992 Oct 20;227(4):1118–1135. doi: 10.1016/0022-2836(92)90525-o. [DOI] [PubMed] [Google Scholar]
  7. Chen X. H., Harvey A. L. Effects of different antagonists on depolarization of cultured chick myotubes by cobra venom cardiotoxins and Pyrularia thionin from the plant Pyrularia pubera. Toxicon. 1993 Oct;31(10):1229–1236. doi: 10.1016/0041-0101(93)90396-z. [DOI] [PubMed] [Google Scholar]
  8. Chiang C. M., Chien K. Y., Lin H. J., Lin J. F., Yeh H. C., Ho P. L., Wu W. G. Conformational change and inactivation of membrane phospholipid-related activity of cardiotoxin V from Taiwan cobra venom at acidic pH. Biochemistry. 1996 Jul 16;35(28):9167–9176. doi: 10.1021/bi952823k. [DOI] [PubMed] [Google Scholar]
  9. Chien K. Y., Chiang C. M., Hseu Y. C., Vyas A. A., Rule G. S., Wu W. Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J Biol Chem. 1994 May 20;269(20):14473–14483. [PubMed] [Google Scholar]
  10. Chien K. Y., Huang W. N., Jean J. H., Wu W. G. Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. Interactions of zwitterionic phospholipids with cardiotoxin analogues. J Biol Chem. 1991 Feb 15;266(5):3252–3259. [PubMed] [Google Scholar]
  11. Costa L. A., Miles H., Araujo C. E., González S., Villarrubia V. G. Tumor regression of advanced carcinomas following intra- and/or peri-tumoral inoculation with VRCTC-310 in humans: preliminary report of two cases. Immunopharmacol Immunotoxicol. 1998 Feb;20(1):15–25. doi: 10.3109/08923979809034806. [DOI] [PubMed] [Google Scholar]
  12. Dubovskii P. V., Dementieva D. V., Bocharov E. V., Utkin Y. N., Arseniev A. S. Membrane binding motif of the P-type cardiotoxin. J Mol Biol. 2001 Jan 5;305(1):137–149. doi: 10.1006/jmbi.2000.4283. [DOI] [PubMed] [Google Scholar]
  13. Dufourcq J., Faucon J. F., Bernard E., Pezolet M., Tessier M., van Rietschoten J., Delori P., Rochat H. Structure-function relationships for cardiotoxins interacting with phospholipids. Toxicon. 1982;20(1):165–174. doi: 10.1016/0041-0101(82)90187-8. [DOI] [PubMed] [Google Scholar]
  14. Dufton M. J. Classification of elapid snake neurotoxins and cytotoxins according to chain length: evolutionary implications. J Mol Evol. 1984;20(2):128–134. doi: 10.1007/BF02257373. [DOI] [PubMed] [Google Scholar]
  15. Dufton M. J., Hider R. C. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit Rev Biochem. 1983;14(2):113–171. doi: 10.3109/10409238309102792. [DOI] [PubMed] [Google Scholar]
  16. Fletcher J. E., Jiang M. S., Tripolitis L., Smith L. A., Beech J. Interactions in red blood cells between fatty acids and either snake venom cardiotoxin or halothane. Toxicon. 1990;28(6):657–667. doi: 10.1016/0041-0101(90)90254-5. [DOI] [PubMed] [Google Scholar]
  17. Gatineau E., Takechi M., Bouet F., Mansuelle P., Rochat H., Harvey A. L., Montenay-Garestier T., Ménez A. Delineation of the functional site of a snake venom cardiotoxin: preparation, structure, and function of monoacetylated derivatives. Biochemistry. 1990 Jul 10;29(27):6480–6489. doi: 10.1021/bi00479a021. [DOI] [PubMed] [Google Scholar]
  18. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  19. Harvey A. L., Marshall R. J., Karlsson E. Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations. Toxicon. 1982;20(2):379–396. doi: 10.1016/0041-0101(82)90001-0. [DOI] [PubMed] [Google Scholar]
  20. Hatanaka H., Oka M., Kohda D., Tate S., Suda A., Tamiya N., Inagaki F. Tertiary structure of erabutoxin b in aqueous solution as elucidated by two-dimensional nuclear magnetic resonance. J Mol Biol. 1994 Jul 8;240(2):155–166. doi: 10.1006/jmbi.1994.1429. [DOI] [PubMed] [Google Scholar]
  21. Jayaraman G., Krishnaswamy T., Kumar S., Yu C. Binding of nucleotide triphosphates to cardiotoxin analogue II from the Taiwan cobra venom (Naja naja atra). Elucidation of the structural interactions in the dATP-cardiotoxin analogue ii complex. J Biol Chem. 1999 Jun 18;274(25):17869–17875. doi: 10.1074/jbc.274.25.17869. [DOI] [PubMed] [Google Scholar]
  22. Jayaraman G., Kumar T. K., Tsai C. C., Srisailam S., Chou S. H., Ho C. L., Yu C. Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)--identification of structural features important for the lethal action of snake venom cardiotoxins. Protein Sci. 2000 Apr;9(4):637–646. doi: 10.1110/ps.9.4.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jeyaseelan K., Armugam A., Lachumanan R., Tan C. H., Tan N. H. Six isoforms of cardiotoxin in malayan spitting cobra (Naja naja sputatrix) venom: cloning and characterization of cDNAs. Biochim Biophys Acta. 1998 Apr 10;1380(2):209–222. doi: 10.1016/s0304-4165(97)00143-8. [DOI] [PubMed] [Google Scholar]
  24. Jordan M., Schallhorn A., Wurm F. M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 1996 Feb 15;24(4):596–601. doi: 10.1093/nar/24.4.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kumar T. K., Jayaraman G., Lee C. S., Arunkumar A. I., Sivaraman T., Samuel D., Yu C. Snake venom cardiotoxins-structure, dynamics, function and folding. J Biomol Struct Dyn. 1997 Dec;15(3):431–463. doi: 10.1080/07391102.1997.10508957. [DOI] [PubMed] [Google Scholar]
  26. Lauterwein J., Wüthrich K. A possible structural basis for the different modes of action of neurotoxins and cardiotoxins from snake venoms. FEBS Lett. 1978 Sep 15;93(2):181–184. doi: 10.1016/0014-5793(78)81100-4. [DOI] [PubMed] [Google Scholar]
  27. Lee C. S., Kumar T. K., Lian L. Y., Cheng J. W., Yu C. Main-chain dynamics of cardiotoxin II from Taiwan cobra (Naja naja atra) as studied by carbon-13 NMR at natural abundance: delineation of the role of functionally important residues. Biochemistry. 1998 Jan 6;37(1):155–164. doi: 10.1021/bi971979c. [DOI] [PubMed] [Google Scholar]
  28. Ma D., Armugam A., Jeyaseelan K. Expression of cardiotoxin-2 gene. Cloning, characterization and deletion analysis of the promoter. Eur J Biochem. 2001 Mar;268(6):1844–1850. doi: 10.1046/j.1432-1033.2001.02059.x. [DOI] [PubMed] [Google Scholar]
  29. Massie B., Couture F., Lamoureux L., Mosser D. D., Guilbault C., Jolicoeur P., Bélanger F., Langelier Y. Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette. J Virol. 1998 Mar;72(3):2289–2296. doi: 10.1128/jvi.72.3.2289-2296.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ménez A., Gatineau E., Roumestand C., Harvey A. L., Mouawad L., Gilquin B., Toma F. Do cardiotoxins possess a functional site? Structural and chemical modification studies reveal the functional site of the cardiotoxin from Naja nigricollis. Biochimie. 1990 Aug;72(8):575–588. doi: 10.1016/0300-9084(90)90121-v. [DOI] [PubMed] [Google Scholar]
  31. Nakagawa I., Nakata M., Kawabata S., Hamada S. Regulated expression of the Shiga toxin B gene induces apoptosis in mammalian fibroblastic cells. Mol Microbiol. 1999 Sep;33(6):1190–1199. doi: 10.1046/j.1365-2958.1999.01564.x. [DOI] [PubMed] [Google Scholar]
  32. Patel H. V., Vyas A. A., Vyas K. A., Liu Y. S., Chiang C. M., Chi L. M., Wu W. g. Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J Biol Chem. 1997 Jan 17;272(3):1484–1492. doi: 10.1074/jbc.272.3.1484. [DOI] [PubMed] [Google Scholar]
  33. Pollock R., Issner R., Zoller K., Natesan S., Rivera V. M., Clackson T. Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13221–13226. doi: 10.1073/pnas.230446297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ricciardi A., le Du M. H., Khayati M., Dajas F., Boulain J. C., Menez A., Ducancel F. Do structural deviations between toxins adopting the same fold reflect functional differences? J Biol Chem. 2000 Jun 16;275(24):18302–18310. doi: 10.1074/jbc.275.24.18302. [DOI] [PubMed] [Google Scholar]
  35. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  36. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  37. Sivaraman T., Kumar T. K., Chang D. K., Lin W. Y., Yu C. Events in the kinetic folding pathway of a small, all beta-sheet protein. J Biol Chem. 1998 Apr 24;273(17):10181–10189. doi: 10.1074/jbc.273.17.10181. [DOI] [PubMed] [Google Scholar]
  38. Sivaraman T., Kumar T. K., Jayaraman G., Han C. C., Yu C. Characterization of a partially structured state in an all-beta-sheet protein. Biochem J. 1997 Jan 15;321(Pt 2):457–464. doi: 10.1042/bj3210457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stevens-Truss R., Hinman C. L. Activities of cobra venom cytotoxins toward heart and leukemic T-cells depend on localized amino acid differences. Toxicon. 1997 May;35(5):659–669. doi: 10.1016/s0041-0101(96)00188-2. [DOI] [PubMed] [Google Scholar]
  40. Takacs Z., Wilhelmsen K. C., Sorota S. Snake alpha-neurotoxin binding site on the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor Is conserved. Mol Biol Evol. 2001 Sep;18(9):1800–1809. doi: 10.1093/oxfordjournals.molbev.a003967. [DOI] [PubMed] [Google Scholar]
  41. Teng C. M., Jy W., Ouyang C. Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation. Toxicon. 1984;22(3):463–470. doi: 10.1016/0041-0101(84)90090-4. [DOI] [PubMed] [Google Scholar]
  42. Tsetlin V. Snake venom alpha-neurotoxins and other 'three-finger' proteins. Eur J Biochem. 1999 Sep;264(2):281–286. doi: 10.1046/j.1432-1327.1999.00623.x. [DOI] [PubMed] [Google Scholar]
  43. Yao F., Svensjö T., Winkler T., Lu M., Eriksson C., Eriksson E. Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum Gene Ther. 1998 Sep 1;9(13):1939–1950. doi: 10.1089/hum.1998.9.13-1939. [DOI] [PubMed] [Google Scholar]
  44. Zaheer A., Braganca B. M. Comparative study of three basic polypeptides from snake venoms in relation to their effects on the cell membrane of normal and tumor cells. Cancer Biochem Biophys. 1980;5(1):41–46. [PubMed] [Google Scholar]
  45. de Planque M. R., Kruijtzer J. A., Liskamp R. M., Marsh D., Greathouse D. V., Koeppe R. E., 2nd, de Kruijff B., Killian J. A. Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. J Biol Chem. 1999 Jul 23;274(30):20839–20846. doi: 10.1074/jbc.274.30.20839. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES