Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 15;366(Pt 1):109–119. doi: 10.1042/BJ20011777

Inhibition of cholesterol biosynthesis by Delta22-unsaturated phytosterols via competitive inhibition of sterol Delta24-reductase in mammalian cells.

Carlos Fernández 1, Yajaira Suárez 1, Antonio J Ferruelo 1, Diego Gómez-Coronado 1, Miguel A Lasunción 1
PMCID: PMC1222779  PMID: 12162789

Abstract

Dietary phytosterols are cholesterol-lowering agents that interfere with the intestinal absorption of cholesterol. In the present study, we have studied their effects on cholesterol biosynthesis in human cells, particularly in the sterol-conversion pathway. For this, both Caco-2 (intestinal mucosa) and HL-60 (promyelocytic) human cell lines were incubated with [(14)C]acetate, and the incorporation of radioactivity into sterols was determined using HPLC and radioactivity detection online. Sterols containing a double bond at C-22 in the side chain (stigmasterol, brassicasterol and ergosterol) dramatically inhibited the activity of sterol Delta(24)-reductase, as indicated by the decrease in radioactivity incorporation into cholesterol and the accumulation of its precursors (mainly desmosterol). Phytosterols with the saturated side chain (beta-sitosterol and campesterol) were inactive in this regard. The inhibition of sterol (24)-reductase was confirmed in rat liver microsomes by using (14)C-labelled desmosterol as the substrate. The (22)-unsaturated phytosterols acted as competitive inhibitors of sterol (24)-reductase, with K(i) values (41.1, 42.7 and 36.8 microM for stigmasterol, brassicasterol and ergosterol respectively) similar to the estimated K(m) for desmosterol (26.3 microM). The sterol 5,22-cholestedien-3beta-ol, an unusual desmosterol isomer that lacks the alkyl groups characteristic of phytosterols, acted as a much stronger inhibitor of (24)-reductase (K(i)=3.34 microM). The usually low intracellular concentrations of the physiological substrates of (24)-reductase explains the strong inhibition of cholesterol biosynthesis that these compounds exert in cells. Given that inhibition of sterol (24)-reductase was achieved at physiologically relevant concentrations, it may represent an additional mechanism for the cholesterol-lowering action of phytosterols, and opens up the possibility of using certain (22)-unsaturated sterols as effective hypocholesterolaemic agents.

Full Text

The Full Text of this article is available as a PDF (294.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aringer L., Eneroth P., Nordström L. Side-chain cleavage of 4-cholesten-3-one, 5-cholesten-3 alpha-ol, beta-sitosterol, and related steroids in endocrine tissues from rat and man. J Steroid Biochem. 1979 Sep;11(3):1271–1285. doi: 10.1016/0022-4731(79)90196-1. [DOI] [PubMed] [Google Scholar]
  2. Aufenanger J., Pill J., Schmidt F. H., Stegmeier K. The effects of BM 15.766, an inhibitor of 7-dehydrocholesterol delta 7-reductase, on cholesterol biosynthesis in primary rat hepatocytes. Biochem Pharmacol. 1986 Mar 15;35(6):911–916. doi: 10.1016/0006-2952(86)90076-6. [DOI] [PubMed] [Google Scholar]
  3. Awad A. B., Fink C. S. Phytosterols as anticancer dietary components: evidence and mechanism of action. J Nutr. 2000 Sep;130(9):2127–2130. doi: 10.1093/jn/130.9.2127. [DOI] [PubMed] [Google Scholar]
  4. Bae S. H., Paik Y. K. Cholesterol biosynthesis from lanosterol: development of a novel assay method and characterization of rat liver microsomal lanosterol delta 24-reductase. Biochem J. 1997 Sep 1;326(Pt 2):609–616. doi: 10.1042/bj3260609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berge K. E., Tian H., Graf G. A., Yu L., Grishin N. V., Schultz J., Kwiterovich P., Shan B., Barnes R., Hobbs H. H. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000 Dec 1;290(5497):1771–1775. doi: 10.1126/science.290.5497.1771. [DOI] [PubMed] [Google Scholar]
  6. Bhattacharyya A. K., Connor W. E. Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest. 1974 Apr;53(4):1033–1043. doi: 10.1172/JCI107640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bhattacharyya A. K. Uptake and esterification of plant sterols by rat small intestine. Am J Physiol. 1981 Jan;240(1):G50–G55. doi: 10.1152/ajpgi.1981.240.1.G50. [DOI] [PubMed] [Google Scholar]
  8. Boberg K. M., Akerlund J. E., Björkhem I. Effect of sitosterol on the rate-limiting enzymes in cholesterol synthesis and degradation. Lipids. 1989 Jan;24(1):9–12. doi: 10.1007/BF02535257. [DOI] [PubMed] [Google Scholar]
  9. Boberg K. M., Skrede B., Skrede S. Metabolism of 24-ethyl-4-cholesten-3-one and 24-ethyl-5-cholesten-3 beta-ol (sitosterol) after intraperitoneal injection in the rat. Scand J Clin Lab Invest Suppl. 1986;184:47–54. [PubMed] [Google Scholar]
  10. Chen H. W., Leonard D. A., Fischer R. T., Trzaskos J. M. A mammalian mutant cell lacking detectable lanosterol 14 alpha-methyl demethylase activity. J Biol Chem. 1988 Jan 25;263(3):1248–1254. [PubMed] [Google Scholar]
  11. Echevarria F., Norton R. A., Nes W. D., Lange Y. Zymosterol is located in the plasma membrane of cultured human fibroblasts. J Biol Chem. 1990 May 25;265(15):8484–8489. [PubMed] [Google Scholar]
  12. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  13. Field F. J., Born E., Mathur S. N. Effect of micellar beta-sitosterol on cholesterol metabolism in CaCo-2 cells. J Lipid Res. 1997 Feb;38(2):348–360. [PubMed] [Google Scholar]
  14. Gylling H., Miettinen T. A. Cholesterol reduction by different plant stanol mixtures and with variable fat intake. Metabolism. 1999 May;48(5):575–580. doi: 10.1016/s0026-0495(99)90053-7. [DOI] [PubMed] [Google Scholar]
  15. Hallikainen M. A., Uusitupa M. I. Effects of 2 low-fat stanol ester-containing margarines on serum cholesterol concentrations as part of a low-fat diet in hypercholesterolemic subjects. Am J Clin Nutr. 1999 Mar;69(3):403–410. doi: 10.1093/ajcn/69.3.403. [DOI] [PubMed] [Google Scholar]
  16. Heinemann T., Axtmann G., von Bergmann K. Comparison of intestinal absorption of cholesterol with different plant sterols in man. Eur J Clin Invest. 1993 Dec;23(12):827–831. doi: 10.1111/j.1365-2362.1993.tb00737.x. [DOI] [PubMed] [Google Scholar]
  17. Higgins M., Kawachi T., Rudney H. The mechanism of the diurnal variation of hepatic HMG-CoA reductase activity in the rat. Biochem Biophys Res Commun. 1971 Oct 1;45(1):138–144. doi: 10.1016/0006-291x(71)90061-1. [DOI] [PubMed] [Google Scholar]
  18. Hirai K., Shimazu C., Takezoe R., Ozeki Y. Cholesterol, phytosterol and polyunsaturated fatty acid levels in 1982 and 1957 Japanese diets. J Nutr Sci Vitaminol (Tokyo) 1986 Aug;32(4):363–372. doi: 10.3177/jnsv.32.363. [DOI] [PubMed] [Google Scholar]
  19. Honda A., Salen G., Honda M., Batta A. K., Tint G. S., Xu G., Chen T. S., Tanaka N., Shefer S. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity is inhibited by cholesterol and up-regulated by sitosterol in sitosterolemic fibroblasts. J Lab Clin Med. 2000 Feb;135(2):174–179. doi: 10.1067/mlc.2000.104459. [DOI] [PubMed] [Google Scholar]
  20. Ikeda I., Tanaka K., Sugano M., Vahouny G. V., Gallo L. L. Inhibition of cholesterol absorption in rats by plant sterols. J Lipid Res. 1988 Dec;29(12):1573–1582. [PubMed] [Google Scholar]
  21. Jones P. J., Raeini-Sarjaz M., Ntanios F. Y., Vanstone C. A., Feng J. Y., Parsons W. E. Modulation of plasma lipid levels and cholesterol kinetics by phytosterol versus phytostanol esters. J Lipid Res. 2000 May;41(5):697–705. [PubMed] [Google Scholar]
  22. Koroly M. J., Dempsey M. E. Synthesis of delta 5,22-cholestadien-3 beta-ol from delta 5,7,22-cholestatrien-3 beta-ol by a liver enzyme. Lipids. 1981 Oct;16(10):755–758. doi: 10.1007/BF02535344. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Law M. Plant sterol and stanol margarines and health. BMJ. 2000 Mar 25;320(7238):861–864. doi: 10.1136/bmj.320.7238.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee M. H., Lu K., Hazard S., Yu H., Shulenin S., Hidaka H., Kojima H., Allikmets R., Sakuma N., Pegoraro R. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet. 2001 Jan;27(1):79–83. doi: 10.1038/83799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee M. H., Lu K., Patel S. B. Genetic basis of sitosterolemia. Curr Opin Lipidol. 2001 Apr;12(2):141–149. doi: 10.1097/00041433-200104000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lütjohann D., Björkhem I., Ose L. Phytosterolaemia in a Norwegian family: diagnosis and characterization of the first Scandinavian case. Scand J Clin Lab Invest. 1996 May;56(3):229–240. doi: 10.3109/00365519609088612. [DOI] [PubMed] [Google Scholar]
  28. Martínez-Botas J., Ferruelo A. J., Suárez Y., Fernández C., Gómez-Coronado D., Lasunción M. A. Dose-dependent effects of lovastatin on cell cycle progression. Distinct requirement of cholesterol and non-sterol mevalonate derivatives. Biochim Biophys Acta. 2001 Jun 29;1532(3):185–194. doi: 10.1016/s1388-1981(01)00125-1. [DOI] [PubMed] [Google Scholar]
  29. Miettinen T. A., Gylling H. Regulation of cholesterol metabolism by dietary plant sterols. Curr Opin Lipidol. 1999 Feb;10(1):9–14. doi: 10.1097/00041433-199902000-00003. [DOI] [PubMed] [Google Scholar]
  30. Miettinen T. A. Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. Eur J Clin Invest. 1980 Feb;10(1):27–35. doi: 10.1111/j.1365-2362.1980.tb00006.x. [DOI] [PubMed] [Google Scholar]
  31. Moghadasian M. H., Frohlich J. J. Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: clinical and experimental evidence. Am J Med. 1999 Dec;107(6):588–594. doi: 10.1016/s0002-9343(99)00285-5. [DOI] [PubMed] [Google Scholar]
  32. Moghadasian M. H. Pharmacological properties of plant sterols in vivo and in vitro observations. Life Sci. 2000 Jun 30;67(6):605–615. doi: 10.1016/s0024-3205(00)00665-2. [DOI] [PubMed] [Google Scholar]
  33. Nguyen L. B., Salen G., Shefer S., Bullock J., Chen T., Tint G. S., Chowdhary I. R., Lerner S. Deficient ileal 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in sitosterolemia: sitosterol is not a feedback inhibitor of intestinal cholesterol biosynthesis. Metabolism. 1994 Jul;43(7):855–859. doi: 10.1016/0026-0495(94)90266-6. [DOI] [PubMed] [Google Scholar]
  34. Normén L., Dutta P., Lia A., Andersson H. Soy sterol esters and beta-sitostanol ester as inhibitors of cholesterol absorption in human small bowel. Am J Clin Nutr. 2000 Apr;71(4):908–913. doi: 10.1093/ajcn/71.4.908. [DOI] [PubMed] [Google Scholar]
  35. Ntanios F. Y., Jones P. J., Frohlich J. J. Effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor on sterol absorption in hypercholesterolemic subjects. Metabolism. 1999 Jan;48(1):68–73. doi: 10.1016/s0026-0495(99)90012-4. [DOI] [PubMed] [Google Scholar]
  36. PETERSON D. W. Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks. Proc Soc Exp Biol Med. 1951 Oct;78(1):143–147. doi: 10.3181/00379727-78-19002. [DOI] [PubMed] [Google Scholar]
  37. Panini S. R., Gupta A., Sexton R. C., Parish E. J., Rudney H. Regulation of sterol biosynthesis and of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in cultured cells by progesterone. J Biol Chem. 1987 Oct 25;262(30):14435–14440. [PubMed] [Google Scholar]
  38. Popják G., Meenan A., Parish E. J., Nes W. D. Inhibition of cholesterol synthesis and cell growth by 24(R,S),25-iminolanosterol and triparanol in cultured rat hepatoma cells. J Biol Chem. 1989 Apr 15;264(11):6230–6238. [PubMed] [Google Scholar]
  39. Raicht R. F., Cohen B. I., Shefer S., Mosbach E. H. Sterol balance studies in the rat. Effects of dietary cholesterol and beta-sitosterol on sterol balance and rate-limiting enzymes of sterol metabolism. Biochim Biophys Acta. 1975 Jun 23;388(3):374–384. doi: 10.1016/0005-2760(75)90096-x. [DOI] [PubMed] [Google Scholar]
  40. Relas H., Gylling H., Miettinen T. A. Fate of intravenously administered squalene and plant sterols in human subjects. J Lipid Res. 2001 Jun;42(6):988–994. [PubMed] [Google Scholar]
  41. Rothblat G. H., Burns C. H., Conner R. L., Landrey J. R. Desmosterol as the major sterol in L-cell mouse fibroblasts grown in sterol-free culture medium. Science. 1970 Aug 28;169(3948):880–882. doi: 10.1126/science.169.3948.880. [DOI] [PubMed] [Google Scholar]
  42. Salen G., Shefer S., Nguyen L., Ness G. C., Tint G. S., Shore V. Sitosterolemia. J Lipid Res. 1992 Jul;33(7):945–955. [PubMed] [Google Scholar]
  43. Salen G., Shore V., Tint G. S., Forte T., Shefer S., Horak I., Horak E., Dayal B., Nguyen L., Batta A. K. Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis. J Lipid Res. 1989 Sep;30(9):1319–1330. [PubMed] [Google Scholar]
  44. Sexton R. C., Panini S. R., Azran F., Rudney H. Effects of 3 beta-[2-(diethylamino)ethoxy]androst-5-en-17-one on the synthesis of cholesterol and ubiquinone in rat intestinal epithelial cell cultures. Biochemistry. 1983 Dec 6;22(25):5687–5692. doi: 10.1021/bi00294a001. [DOI] [PubMed] [Google Scholar]
  45. Shefer S., Salen G., Bullock J., Nguyen L. B., Ness G. C., Vhao Z., Belamarich P. F., Chowdhary I., Lerner S., Batta A. K. The effect of increased hepatic sitosterol on the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol 7 alpha-hydroxylase in the rat and sitosterolemic homozygotes. Hepatology. 1994 Jul;20(1 Pt 1):213–219. doi: 10.1016/0270-9139(94)90155-4. [DOI] [PubMed] [Google Scholar]
  46. Shefer S., Salen G., Honda A., Batta A. K., Nguyen L. B., Tint G. S., Ioannou Y. A., Desnick R. Regulation of rat hepatic 3beta-hydroxysterol delta7-reductase: substrate specificity, competitive and non-competitive inhibition, and phosphorylation/dephosphorylation. J Lipid Res. 1998 Dec;39(12):2471–2476. [PubMed] [Google Scholar]
  47. Subbiah M. T., Kuksis A. Conversion of beta-sitosterol to steroid hormones by rat testes in vitro. Experientia. 1975 Jul 15;31(7):763–764. doi: 10.1007/BF01938448. [DOI] [PubMed] [Google Scholar]
  48. Tabas I., Feinmark S. J., Beatini N. The reactivity of desmosterol and other shellfish- and xanthomatosis-associated sterols in the macrophage sterol esterification reaction. J Clin Invest. 1989 Dec;84(6):1713–1721. doi: 10.1172/JCI114354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tavani D. M., Nes W. R., Billheimer J. T. The sterol substrate specificity of acyl CoA: :cholesterol acyltransferase from rat liver. J Lipid Res. 1982 Jul;23(5):774–781. [PubMed] [Google Scholar]
  50. Vahouny G. V., Connor W. E., Subramaniam S., Lin D. S., Gallo L. L. Comparative lymphatic absorption of sitosterol, stigmasterol, and fucosterol and differential inhibition of cholesterol absorption. Am J Clin Nutr. 1983 May;37(5):805–809. doi: 10.1093/ajcn/37.5.805. [DOI] [PubMed] [Google Scholar]
  51. Waterham H. R., Koster J., Romeijn G. J., Hennekam R. C., Vreken P., Andersson H. C., FitzPatrick D. R., Kelley R. I., Wanders R. J. Mutations in the 3beta-hydroxysterol Delta24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis. Am J Hum Genet. 2001 Aug 22;69(4):685–694. doi: 10.1086/323473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Weihrauch J. L., Gardner J. M. Sterol content of foods of plant origin. J Am Diet Assoc. 1978 Jul;73(1):39–47. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES