Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):663–671. doi: 10.1042/BJ20011612

Antizyme induction by polyamine analogues as a factor of cell growth inhibition.

John L A Mitchell 1, Aviva Leyser 1, Michelle S Holtorff 1, Jill S Bates 1, Benjamin Frydman 1, Aldonia L Valasinas 1, Venodhar K Reddy 1, Laurence J Marton 1
PMCID: PMC1222781  PMID: 11972449

Abstract

The polyamines spermidine and spermine and their diamine precursor putrescine are essential for mammalian cell growth and viability, and strategies are sought for reducing polyamine levels in order to inhibit cancer growth. Several structural analogues of the polyamines have been found to decrease natural polyamine levels and inhibit cell growth, probably by stimulating normal feedback mechanisms. In the present study, a large selection of spermine analogues has been tested for their effectiveness in inducing the production of antizyme, a key protein in feedback inhibition of putrescine synthesis and cellular polyamine uptake. Bisethylnorspermine, bisethylhomospermine, 1,19-bis-(ethylamino)-5,10,15-triazanonadecane, longer oligoamine constructs and many conformationally constrained analogues of these compounds were found to stimulate antizyme synthesis to different levels in rat liver HTC cells, with some producing far more antizyme than the natural polyamine spermine. Uptake of the tested compounds was found to be dependent on, and limited by, the polyamine transport system, for which all these have approximately equal affinity. These analogues differed in their ability to inhibit HTC cell growth during 3 days of exposure, and this ability correlated with their antizyme-inducing potential. This is the first direct evidence that antizyme is induced by several polyamine analogues. Selection of analogues with this potential may be an effective strategy for maximizing polyamine deprivation and growth inhibition.

Full Text

The Full Text of this article is available as a PDF (243.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basu H. S., Pellarin M., Feuerstein B. G., Shirahata A., Samejima K., Deen D. F., Marton L. J. Interaction of a polyamine analogue, 1,19-bis-(ethylamino)-5,10,15- triazanonadecane (BE-4-4-4-4), with DNA and effect on growth, survival, and polyamine levels in seven human brain tumor cell lines. Cancer Res. 1993 Sep 1;53(17):3948–3955. [PubMed] [Google Scholar]
  2. Bitonti A. J., Sjoerdsma A., McCann P. P., Kyle D. E., Oduola A. M., Rossan R. N., Milhous W. K., Davidson D. E., Jr Reversal of chloroquine resistance in malaria parasite Plasmodium falciparum by desipramine. Science. 1988 Dec 2;242(4883):1301–1303. doi: 10.1126/science.3057629. [DOI] [PubMed] [Google Scholar]
  3. Byers T. L., Pegg A. E. Properties and physiological function of the polyamine transport system. Am J Physiol. 1989 Sep;257(3 Pt 1):C545–C553. doi: 10.1152/ajpcell.1989.257.3.C545. [DOI] [PubMed] [Google Scholar]
  4. Chang B. K., Libby P. R., Bergeron R. J., Porter C. W. Modulation of polyamine biosynthesis and transport by oncogene transfection. Biochem Biophys Res Commun. 1988 Nov 30;157(1):264–270. doi: 10.1016/s0006-291x(88)80042-1. [DOI] [PubMed] [Google Scholar]
  5. Coffino P. Antizyme, a mediator of ubiquitin-independent proteasomal degradation. Biochimie. 2001 Mar-Apr;83(3-4):319–323. doi: 10.1016/s0300-9084(01)01252-4. [DOI] [PubMed] [Google Scholar]
  6. Coffino P. Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol. 2001 Mar;2(3):188–194. doi: 10.1038/35056508. [DOI] [PubMed] [Google Scholar]
  7. Gabrielson E. W., Pegg A. E., Casero R. A., Jr The induction of spermidine/spermine N1-acetyltransferase (SSAT) is a common event in the response of human primary non-small cell lung carcinomas to exposure to the new antitumor polyamine analogue N1,N11-bis(ethyl)norspermine. Clin Cancer Res. 1999 Jul;5(7):1638–1641. [PubMed] [Google Scholar]
  8. Ghoda L., Basu H. S., Porter C. W., Marton L. J., Coffino P. Role of ornithine decarboxylase suppression and polyamine depletion in the antiproliferative activity of polyamine analogs. Mol Pharmacol. 1992 Aug;42(2):302–306. [PubMed] [Google Scholar]
  9. Hayashi S., Murakami Y., Matsufuji S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci. 1996 Jan;21(1):27–30. [PubMed] [Google Scholar]
  10. Hayashi T., Matsufuji S., Hayashi S. Characterization of the human antizyme gene. Gene. 1997 Dec 12;203(2):131–139. doi: 10.1016/s0378-1119(97)00504-0. [DOI] [PubMed] [Google Scholar]
  11. Igarashi K., Kashiwagi K. Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun. 2000 May 19;271(3):559–564. doi: 10.1006/bbrc.2000.2601. [DOI] [PubMed] [Google Scholar]
  12. Ivanov I. P., Gesteland R. F., Atkins J. F. A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics. 1998 Sep 1;52(2):119–129. doi: 10.1006/geno.1998.5434. [DOI] [PubMed] [Google Scholar]
  13. Ivanov I. P., Rohrwasser A., Terreros D. A., Gesteland R. F., Atkins J. F. Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4808–4813. doi: 10.1073/pnas.070055897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwata S., Sato Y., Asada M., Takagi M., Tsujimoto A., Inaba T., Yamada T., Sakamoto S., Yata J., Shimogori T. Anti-tumor activity of antizyme which targets the ornithine decarboxylase (ODC) required for cell growth and transformation. Oncogene. 1999 Jan 7;18(1):165–172. doi: 10.1038/sj.onc.1202275. [DOI] [PubMed] [Google Scholar]
  15. Koike C., Chao D. T., Zetter B. R. Sensitivity to polyamine-induced growth arrest correlates with antizyme induction in prostate carcinoma cells. Cancer Res. 1999 Dec 15;59(24):6109–6112. [PubMed] [Google Scholar]
  16. Koza R. A., Megosh L. C., Palmieri M., O'Brien T. G. Constitutively elevated levels of ornithine and polyamines in mouse epidermal papillomas. Carcinogenesis. 1991 Sep;12(9):1619–1625. doi: 10.1093/carcin/12.9.1619. [DOI] [PubMed] [Google Scholar]
  17. Kramer D. L., Fogel-Petrovic M., Diegelman P., Cooley J. M., Bernacki R. J., McManis J. S., Bergeron R. J., Porter C. W. Effects of novel spermine analogues on cell cycle progression and apoptosis in MALME-3M human melanoma cells. Cancer Res. 1997 Dec 15;57(24):5521–5527. [PubMed] [Google Scholar]
  18. Kramer D. L., Miller J. T., Bergeron R. J., Khomutov R., Khomutov A., Porter C. W. Regulation of polyamine transport by polyamines and polyamine analogs. J Cell Physiol. 1993 May;155(2):399–407. doi: 10.1002/jcp.1041550222. [DOI] [PubMed] [Google Scholar]
  19. Marton L. J., Pegg A. E. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol. 1995;35:55–91. doi: 10.1146/annurev.pa.35.040195.000415. [DOI] [PubMed] [Google Scholar]
  20. Matsufuji S., Miyazaki Y., Kanamoto R., Kameji T., Murakami Y., Baby T. G., Fujita K., Ohno T., Hayashi S. Analyses of ornithine decarboxylase antizyme mRNA with a cDNA cloned from rat liver. J Biochem. 1990 Sep;108(3):365–371. doi: 10.1093/oxfordjournals.jbchem.a123207. [DOI] [PubMed] [Google Scholar]
  21. Meyskens F. L., Jr, Gerner E. W. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res. 1999 May;5(5):945–951. [PubMed] [Google Scholar]
  22. Mitchell J. L., Chen H. J. Conformational changes in ornithine decarboxylase enable recognition by antizyme. Biochim Biophys Acta. 1990 Jan 19;1037(1):115–121. doi: 10.1016/0167-4838(90)90109-s. [DOI] [PubMed] [Google Scholar]
  23. Mitchell J. L., Judd G. G., Bareyal-Leyser A., Ling S. Y. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J. 1994 Apr 1;299(Pt 1):19–22. doi: 10.1042/bj2990019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mitchell J. L., Judd G. G., Diveley R. R., Jr, Choe C. Y., Leyser A. Involvement of the polyamine transport system in cellular uptake of the radioprotectants WR-1065 and WR-33278. Carcinogenesis. 1995 Dec;16(12):3063–3068. doi: 10.1093/carcin/16.12.3063. [DOI] [PubMed] [Google Scholar]
  25. Mitchell J. L., Judd G. G., Leyser A., Choe C. Osmotic stress induces variation in cellular levels of ornithine decarboxylase-antizyme. Biochem J. 1998 Feb 1;329(Pt 3):453–459. doi: 10.1042/bj3290453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morgan D. M. Tetrazolium (MTT) assay for cellular viability and activity. Methods Mol Biol. 1998;79:179–183. doi: 10.1385/0-89603-448-8:179. [DOI] [PubMed] [Google Scholar]
  27. Murakami Y., Matsufuji S., Nishiyama M., Hayashi S. Properties and fluctuations in vivo of rat liver antizyme inhibitor. Biochem J. 1989 May 1;259(3):839–845. doi: 10.1042/bj2590839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  29. Porter C. W., Berger F. G., Pegg A. E., Ganis B., Bergeron R. J. Regulation of ornithine decarboxylase activity by spermidine and the spermidine analogue N1N8-bis(ethyl)spermidine. Biochem J. 1987 Mar 1;242(2):433–440. doi: 10.1042/bj2420433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reddy V. K., Sarkar A., Valasinas A., Marton L. J., Basu H. S., Frydman B. cis-Unsaturated analogues of 3,8,13,18,23-pentaazapentacosane (BE-4-4-4-4): synthesis and growth inhibitory effects on human prostate cancer cell lines. J Med Chem. 2001 Feb 1;44(3):404–417. doi: 10.1021/jm000310s. [DOI] [PubMed] [Google Scholar]
  31. Reddy V. K., Valasinas A., Sarkar A., Basu H. S., Marton L. J., Frydman B. Conformationally restricted analogues of 1N,12N-bisethylspermine: synthesis and growth inhibitory effects on human tumor cell lines. J Med Chem. 1998 Nov 19;41(24):4723–4732. doi: 10.1021/jm980172v. [DOI] [PubMed] [Google Scholar]
  32. Seiler N., Atanassov C. L., Raul F. Polyamine metabolism as target for cancer chemoprevention (review). Int J Oncol. 1998 Nov;13(5):993–1006. doi: 10.3892/ijo.13.5.993. [DOI] [PubMed] [Google Scholar]
  33. Suzuki T., He Y., Kashiwagi K., Murakami Y., Hayashi S., Igarashi K. Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8930–8934. doi: 10.1073/pnas.91.19.8930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsuji T., Todd R., Meyer C., McBride J., Liao P. H., Huang M. F., Chou M. Y., Donoff R. B., Wong D. T. Reduction of ornithine decarboxylase antizyme (ODC-Az) level in the 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis model. Oncogene. 1998 Jul 2;16(26):3379–3385. doi: 10.1038/sj.onc.1201887. [DOI] [PubMed] [Google Scholar]
  35. Valasinas A., Sarkar A., Reddy V. K., Marton L. J., Basu H. S., Frydman B. Conformationally restricted analogues of 1N,14N-bisethylhomospermine (BE-4-4-4): synthesis and growth inhibitory effects on human prostate cancer cells. J Med Chem. 2001 Feb 1;44(3):390–403. doi: 10.1021/jm000309t. [DOI] [PubMed] [Google Scholar]
  36. Yang D., Hayashi H., Takii T., Mizutani Y., Inukai Y., Onozaki K. Interleukin-1-induced growth inhibition of human melanoma cells. Interleukin-1-induced antizyme expression is responsible for ornithine decarboxylase activity down-regulation. J Biol Chem. 1997 Feb 7;272(6):3376–3383. doi: 10.1074/jbc.272.6.3376. [DOI] [PubMed] [Google Scholar]
  37. van de Lest C. H., Veerkamp J. H., van Kuppevelt T. H. ImageCalc: a Microsoft Windows application for quantitative image analysis and comparison. Biotechniques. 1995 Jun;18(6):1050–1055. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES