Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):435–446. doi: 10.1042/BJ20020023

Interaction of heparin with internally quenched fluorogenic peptides derived from heparin-binding consensus sequences, kallistatin and anti-thrombin III.

Daniel C Pimenta 1, Iseli L Nantes 1, Eduardo S de Souza 1, Bernard Le Bonniec 1, Amando S Ito 1, Ivarne L S Tersariol 1, Vitor Oliveira 1, Maria A Juliano 1, Luiz Juliano 1
PMCID: PMC1222784  PMID: 12000310

Abstract

Internally quenched fluorogenic (IQF) peptides bearing the fluorescence donor/acceptor pair o-aminobenzoic acid (Abz)/N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) at N- and C-terminal ends were synthesized containing heparin-binding sites from the human serpins kallistatin and antithrombin, as well as consensus heparin-binding sequences (Cardin clusters). The dissociation constant (K(d)), as well as the stoichiometry for the heparin-peptide complexes, was determined directly by measuring the decrease in fluorescence of the peptide solution. Experimental procedures were as sensitive as those used to follow the fluorescence change of tryptophan in heparin-binding proteins. The conformation of the peptides and the heparin-peptide complexes were obtained from measurements of time-resolved fluorescence decay and CD spectra. Kallistatin (Arg(300)-Pro(319))-derived peptide (HC2) and one derived from antithrombin III helix D [(AT3D), corresponding to Ser(112)-Lys(139)], which are the heparin-binding sites in these serpins, showed significant affinity for 4500 Da heparin, for which K(d) values were 17 nM and 100 nM respectively. The CD spectra of the heparin-HC2 peptide complex did not show any significant alpha-helix content, different from the situation with peptide AT3D, for which complex-formation with heparin resulted in 24% alpha-helix content. The end-to-end distance distribution and the time-resolved fluorescence-decay measurements agree with the CD spectra and K(d) values. The synthetic alpha-methyl glycoside pentasaccharide AGA*IA(M) (where A represents N,6-O-sulphated alpha-d-glucosamine; G, beta-d-glucuronic acid; A*, N,3,6-O-sulphated alpha-d-glucosamine; I, 2-O-sulphated alpha-l-iduronic acid; and A(M), alpha-methyl glycoside of A) also binds to AT3D and other consensus heparin-binding sequences, although with lower affinity. The interaction of IQF peptides with 4500 Da heparin was displaced by protamine. In conclusion, IQF peptides containing Abz/EDDnp as the donor/acceptor fluorescence pair are very promising tools for structure-activity relationship studies on heparin-peptide complexes, as well as for the development of new peptides as heparin reversal-effect compounds.

Full Text

The Full Text of this article is available as a PDF (257.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida P. C., Nantes I. L., Chagas J. R., Rizzi C. C., Faljoni-Alario A., Carmona E., Juliano L., Nader H. B., Tersariol I. L. Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation. J Biol Chem. 2001 Jan 12;276(2):944–951. doi: 10.1074/jbc.M003820200. [DOI] [PubMed] [Google Scholar]
  2. Almeida P. C., Nantes I. L., Rizzi C. C., Júdice W. A., Chagas J. R., Juliano L., Nader H. B., Tersariol I. L. Cysteine proteinase activity regulation. A possible role of heparin and heparin-like glycosaminoglycans. J Biol Chem. 1999 Oct 22;274(43):30433–30438. doi: 10.1074/jbc.274.43.30433. [DOI] [PubMed] [Google Scholar]
  3. Bae J., Desai U. R., Pervin A., Caldwell E. E., Weiler J. M., Linhardt R. J. Interaction of heparin with synthetic antithrombin III peptide analogues. Biochem J. 1994 Jul 1;301(Pt 1):121–129. doi: 10.1042/bj3010121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belzar K. J., Dafforn T. R., Petitou M., Carrell R. W., Huntington J. A. The effect of a reducing-end extension on pentasaccharide binding by antithrombin. J Biol Chem. 2000 Mar 24;275(12):8733–8741. doi: 10.1074/jbc.275.12.8733. [DOI] [PubMed] [Google Scholar]
  5. Cardin A. D., Weintraub H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989 Jan-Feb;9(1):21–32. doi: 10.1161/01.atv.9.1.21. [DOI] [PubMed] [Google Scholar]
  6. Carrell R. W., Evans D. L., Stein P. E. Mobile reactive centre of serpins and the control of thrombosis. Nature. 1991 Oct 10;353(6344):576–578. doi: 10.1038/353576a0. [DOI] [PubMed] [Google Scholar]
  7. Chagas J. R., Juliano L., Prado E. S. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem. 1991 Feb 1;192(2):419–425. doi: 10.1016/0003-2697(91)90558-b. [DOI] [PubMed] [Google Scholar]
  8. Chakrabartty A., Schellman J. A., Baldwin R. L. Large differences in the helix propensities of alanine and glycine. Nature. 1991 Jun 13;351(6327):586–588. doi: 10.1038/351586a0. [DOI] [PubMed] [Google Scholar]
  9. Chen V. C., Chao L., Chao J. A positively charged loop on the surface of kallistatin functions to enhance tissue kallikrein inhibition by acting as a secondary binding site for kallikrein. J Biol Chem. 2000 Dec 22;275(51):40371–40377. doi: 10.1074/jbc.M005691200. [DOI] [PubMed] [Google Scholar]
  10. Chen V. C., Chao L., Pimenta D. C., Bledsoe G., Juliano L., Chao J. Identification of a major heparin-binding site in kallistatin. J Biol Chem. 2001 Jan 12;276(2):1276–1284. doi: 10.1074/jbc.M005791200. [DOI] [PubMed] [Google Scholar]
  11. Chuang Y. J., Swanson R., Raja S. M., Olson S. T. Heparin enhances the specificity of antithrombin for thrombin and factor Xa independent of the reactive center loop sequence. Evidence for an exosite determinant of factor Xa specificity in heparin-activated antithrombin. J Biol Chem. 2001 Feb 7;276(18):14961–14971. doi: 10.1074/jbc.M011550200. [DOI] [PubMed] [Google Scholar]
  12. Deprez P., Doss-Pepe E., Brodsky B., Inestrosa N. C. Interaction of the collagen-like tail of asymmetric acetylcholinesterase with heparin depends on triple-helical conformation, sequence and stability. Biochem J. 2000 Aug 15;350(Pt 1):283–290. [PMC free article] [PubMed] [Google Scholar]
  13. Ermolieff J., Boudier C., Laine A., Meyer B., Bieth J. G. Heparin protects cathepsin G against inhibition by protein proteinase inhibitors. J Biol Chem. 1994 Nov 25;269(47):29502–29508. [PubMed] [Google Scholar]
  14. Ersdal-Badju E., Lu A., Zuo Y., Picard V., Bock S. C. Identification of the antithrombin III heparin binding site. J Biol Chem. 1997 Aug 1;272(31):19393–19400. doi: 10.1074/jbc.272.31.19393. [DOI] [PubMed] [Google Scholar]
  15. Ferran D. S., Sobel M., Harris R. B. Design and synthesis of a helix heparin-binding peptide. Biochemistry. 1992 Jun 2;31(21):5010–5016. doi: 10.1021/bi00136a014. [DOI] [PubMed] [Google Scholar]
  16. Gershkovich A. A., Kholodovych V. V. Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS). J Biochem Biophys Methods. 1996 Dec 30;33(3):135–162. doi: 10.1016/s0165-022x(96)00023-1. [DOI] [PubMed] [Google Scholar]
  17. Ito A. S., Turchiello R. D., Hirata I. Y., Cezari M. H., Meldal M., Juliano L. Fluorescent properties of amino acids labeled with ortho-aminobenzoic acid. Biospectroscopy. 1998;4(6):395–402. doi: 10.1002/(SICI)1520-6343(1998)4:6%3C395::AID-BSPY4%3E3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  18. Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991 Apr;71(2):481–539. doi: 10.1152/physrev.1991.71.2.481. [DOI] [PubMed] [Google Scholar]
  19. Jayaraman G., Wu C. W., Liu Y. J., Chien K. Y., Fang J. C., Lyu P. C. Binding of a de novo designed peptide to specific glycosaminoglycans. FEBS Lett. 2000 Sep 29;482(1-2):154–158. doi: 10.1016/s0014-5793(00)01964-5. [DOI] [PubMed] [Google Scholar]
  20. Jin L., Abrahams J. P., Skinner R., Petitou M., Pike R. N., Carrell R. W. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14683–14688. doi: 10.1073/pnas.94.26.14683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
  22. Knight C. G. Fluorimetric assays of proteolytic enzymes. Methods Enzymol. 1995;248:18–34. doi: 10.1016/0076-6879(95)48004-8. [DOI] [PubMed] [Google Scholar]
  23. Lane D. A., Denton J., Flynn A. M., Thunberg L., Lindahl U. Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J. 1984 Mar 15;218(3):725–732. doi: 10.1042/bj2180725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lindahl U., Thunberg L., Bäckström G., Riesenfeld J., Nordling K., Björk I. Extension and structural variability of the antithrombin-binding sequence in heparin. J Biol Chem. 1984 Oct 25;259(20):12368–12376. [PubMed] [Google Scholar]
  25. Meagher J. L., Beechem J. M., Olson S. T., Gettins P. G. Deconvolution of the fluorescence emission spectrum of human antithrombin and identification of the tryptophan residues that are responsive to heparin binding. J Biol Chem. 1998 Sep 4;273(36):23283–23289. doi: 10.1074/jbc.273.36.23283. [DOI] [PubMed] [Google Scholar]
  26. Nielsen P. K., Yamada Y. Identification of cell-binding sites on the Laminin alpha 5 N-terminal domain by site-directed mutagenesis. J Biol Chem. 2000 Nov 29;276(14):10906–10912. doi: 10.1074/jbc.M008743200. [DOI] [PubMed] [Google Scholar]
  27. Nomizu M., Kuratomi Y., Malinda K. M., Song S. Y., Miyoshi K., Otaka A., Powell S. K., Hoffman M. P., Kleinman H. K., Yamada Y. Cell binding sequences in mouse laminin alpha1 chain. J Biol Chem. 1998 Dec 4;273(49):32491–32499. doi: 10.1074/jbc.273.49.32491. [DOI] [PubMed] [Google Scholar]
  28. Nordenman B., Danielsson A., Björk I. The binding of low-affinity and high-affinity heparin to antithrombin. Fluorescence studies. Eur J Biochem. 1978 Sep 15;90(1):1–6. doi: 10.1111/j.1432-1033.1978.tb12567.x. [DOI] [PubMed] [Google Scholar]
  29. Olson S. T., Björk I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991 Apr 5;266(10):6353–6364. [PubMed] [Google Scholar]
  30. Olson S. T., Björk I., Sheffer R., Craig P. A., Shore J. D., Choay J. Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem. 1992 Jun 25;267(18):12528–12538. [PubMed] [Google Scholar]
  31. Olson S. T., Björk I., Shore J. D. Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods Enzymol. 1993;222:525–559. doi: 10.1016/0076-6879(93)22033-c. [DOI] [PubMed] [Google Scholar]
  32. Olson S. T., Halvorson H. R., Björk I. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J Biol Chem. 1991 Apr 5;266(10):6342–6352. [PubMed] [Google Scholar]
  33. Record M. T., Jr, Lohman M. L., De Haseth P. Ion effects on ligand-nucleic acid interactions. J Mol Biol. 1976 Oct 25;107(2):145–158. doi: 10.1016/s0022-2836(76)80023-x. [DOI] [PubMed] [Google Scholar]
  34. Schick B. P., Gradowski J. F., San Antonio J. D., Martinez J. Novel design of peptides to reverse the anticoagulant activities of heparin and other glycosaminoglycans. Thromb Haemost. 2001 Mar;85(3):482–487. [PubMed] [Google Scholar]
  35. Spillmann D., Witt D., Lindahl U. Defining the interleukin-8-binding domain of heparan sulfate. J Biol Chem. 1998 Jun 19;273(25):15487–15493. doi: 10.1074/jbc.273.25.15487. [DOI] [PubMed] [Google Scholar]
  36. Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
  37. Tumova S., Woods A., Couchman J. R. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol. 2000 Mar;32(3):269–288. doi: 10.1016/s1357-2725(99)00116-8. [DOI] [PubMed] [Google Scholar]
  38. Verrecchio A., Germann M. W., Schick B. P., Kung B., Twardowski T., San Antonio J. D. Design of peptides with high affinities for heparin and endothelial cell proteoglycans. J Biol Chem. 2000 Mar 17;275(11):7701–7707. doi: 10.1074/jbc.275.11.7701. [DOI] [PubMed] [Google Scholar]
  39. de Souza E. S., Hirata I. Y., Juliano L., Ito A. S. End-to-end distance distribution in bradykinin observed by Förster resonance energy transfer. Biochim Biophys Acta. 2000 Apr 6;1474(2):251–261. doi: 10.1016/s0304-4165(00)00004-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES