Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):643–651. doi: 10.1042/BJ20020462

A novel pressure-jump apparatus for the microvolume analysis of protein-ligand and protein-protein interactions: its application to nucleotide binding to skeletal-muscle and smooth-muscle myosin subfragment-1.

David S Pearson 1, Georg Holtermann 1, Patricia Ellison 1, Christine Cremo 1, Michael A Geeves 1
PMCID: PMC1222786  PMID: 12010120

Abstract

Reactions involving proteins frequently involve large changes in volume, which allows the equilibrium position to be perturbed by changes in pressure. Rapid changes in pressure can thus be used to initiate relaxation in pressure; however, this approach is seldom used, because it requires specialized equipment. We have built a microvolume (50 microl) pressure-jump apparatus, powered by a piezoelectric actuator, based on the original design of Clegg and Maxfield [(1976) Rev. Sci. Instrum. 47, 1383-1393]. This equipment can apply pressure changes of +/-20 MPa (maximally) in time periods as short as 80 micros and follow the resulting change in fluorescence signals. The system is relatively simple to use with fast (approx. 1 min) exchange of samples. In the present study, we show that this system can perturb the binding of 2'(3')-O-(N-methylanthraniloyl)-ADP to myosin subfragment-1(S1) from skeletal and smooth muscles. The kinetic data are consistent with previous work, and in addition show that, although 2'(3')-O-(N-methylanthraniloyl)-ADP binds with a similar affinity to both proteins, the increase in molar volume for the skeletal-muscle S1 binding to ADP is half of that for the smooth-muscle protein. This high-volume change for smooth-muscle S1 may be related to the ability of ADP to induce a 23 degrees tilt in the tail of S1 bound to actin.

Full Text

The Full Text of this article is available as a PDF (205.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagshaw C. R., Eccleston J. F., Eckstein F., Goody R. S., Gutfreund H., Trentham D. R. The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Biochem J. 1974 Aug;141(2):351–364. doi: 10.1042/bj1410351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barsotti R. J., Dantzig J. A., Goldman Y. E. Myosin isoforms show different strokes for different blokes. Nat Struct Biol. 1996 Sep;3(9):737–739. doi: 10.1038/nsb0996-737. [DOI] [PubMed] [Google Scholar]
  3. Bauer C. B., Kuhlman P. A., Bagshaw C. R., Rayment I. X-ray crystal structure and solution fluorescence characterization of Mg.2'(3')-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domain. J Mol Biol. 1997 Dec 5;274(3):394–407. doi: 10.1006/jmbi.1997.1325. [DOI] [PubMed] [Google Scholar]
  4. Coates J. H., Criddle A. H., Geeves M. A. Pressure-relaxation studies of pyrene-labelled actin and myosin subfragment 1 from rabbit skeletal muscle. Evidence for two states of acto-subfragment 1. Biochem J. 1985 Dec 1;232(2):351–356. doi: 10.1042/bj2320351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cremo C. R., Geeves M. A. Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry. 1998 Feb 17;37(7):1969–1978. doi: 10.1021/bi9722406. [DOI] [PubMed] [Google Scholar]
  6. Cremo C. R., Neuron J. M., Yount R. G. Interaction of myosin subfragment 1 with fluorescent ribose-modified nucleotides. A comparison of vanadate trapping and SH1-SH2 cross-linking. Biochemistry. 1990 Apr 3;29(13):3309–3319. doi: 10.1021/bi00465a023. [DOI] [PubMed] [Google Scholar]
  7. Davis J. S., Gutfreund H. The scope of moderate pressure changes for kinetic and equilibrium studies of biochemical systems. FEBS Lett. 1976 Dec 31;72(2):199–207. doi: 10.1016/0014-5793(76)80971-4. [DOI] [PubMed] [Google Scholar]
  8. Geeves M. A. Dynamic interaction between actin and myosin subfragment 1 in the presence of ADP. Biochemistry. 1989 Jul 11;28(14):5864–5871. doi: 10.1021/bi00440a024. [DOI] [PubMed] [Google Scholar]
  9. Geeves M. A., Goody R. S., Gutfreund H. Kinetics of acto-S1 interaction as a guide to a model for the crossbridge cycle. J Muscle Res Cell Motil. 1984 Aug;5(4):351–361. doi: 10.1007/BF00818255. [DOI] [PubMed] [Google Scholar]
  10. Geeves M. A., Gutfreund H. The use of pressure perturbations to investigate the interaction of rabbit muscle myosin subfragment 1 with actin in the presence of MgADP. FEBS Lett. 1982 Apr 5;140(1):11–15. doi: 10.1016/0014-5793(82)80509-7. [DOI] [PubMed] [Google Scholar]
  11. Gollub J., Cremo C. R., Cooke R. ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nat Struct Biol. 1996 Sep;3(9):796–802. doi: 10.1038/nsb0996-796. [DOI] [PubMed] [Google Scholar]
  12. Hiratsuka T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim Biophys Acta. 1983 Feb 15;742(3):496–508. doi: 10.1016/0167-4838(83)90267-4. [DOI] [PubMed] [Google Scholar]
  13. Jacob M., Holtermann G., Perl D., Reinstein J., Schindler T., Geeves M. A., Schmid F. X. Microsecond folding of the cold shock protein measured by a pressure-jump technique. Biochemistry. 1999 Mar 9;38(10):2882–2891. doi: 10.1021/bi982487i. [DOI] [PubMed] [Google Scholar]
  14. Ma Y. Z., Taylor E. W. Kinetic mechanism of a monomeric kinesin construct. J Biol Chem. 1997 Jan 10;272(2):717–723. doi: 10.1074/jbc.272.2.717. [DOI] [PubMed] [Google Scholar]
  15. McKillop D. F., Geeves M. A., Balny C. The effect of hydrostatic pressure on the interaction of actomyosin subfragment 1 with nucleotides. Biochem Biophys Res Commun. 1991 Oct 31;180(2):552–557. doi: 10.1016/s0006-291x(05)81100-3. [DOI] [PubMed] [Google Scholar]
  16. Málnási-Csizmadia A., Pearson D. S., Kovács M., Woolley R. J., Geeves M. A., Bagshaw C. R. Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue. Biochemistry. 2001 Oct 23;40(42):12727–12737. doi: 10.1021/bi010963q. [DOI] [PubMed] [Google Scholar]
  17. Oiwa K., Eccleston J. F., Anson M., Kikumoto M., Davis C. T., Reid G. P., Ferenczi M. A., Corrie J. E., Yamada A., Nakayama H. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives. Biophys J. 2000 Jun;78(6):3048–3071. doi: 10.1016/S0006-3495(00)76843-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosenfeld S. S., Xing J., Whitaker M., Cheung H. C., Brown F., Wells A., Milligan R. A., Sweeney H. L. Kinetic and spectroscopic evidence for three actomyosin:ADP states in smooth muscle. J Biol Chem. 2000 Aug 18;275(33):25418–25426. doi: 10.1074/jbc.M002685200. [DOI] [PubMed] [Google Scholar]
  19. Trybus K. M., Taylor E. W. Transient kinetics of adenosine 5'-diphosphate and adenosine 5'-(beta, gamma-imidotriphosphate) binding to subfragment 1 and actosubfragment 1. Biochemistry. 1982 Mar 16;21(6):1284–1294. doi: 10.1021/bi00535a028. [DOI] [PubMed] [Google Scholar]
  20. Weeds A. G., Taylor R. S. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. doi: 10.1038/257054a0. [DOI] [PubMed] [Google Scholar]
  21. Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]
  22. Woodward S. K., Eccleston J. F., Geeves M. A. Kinetics of the interaction of 2'(3')-O-(N-methylanthraniloyl)-ATP with myosin subfragment 1 and actomyosin subfragment 1: characterization of two acto-S1-ADP complexes. Biochemistry. 1991 Jan 15;30(2):422–430. doi: 10.1021/bi00216a017. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES