Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):471–480. doi: 10.1042/BJ20011778

Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases.

Stephan Summerer 1, Abdulsamie Hanano 1, Shigeru Utsumi 1, Michael Arand 1, Francis Schuber 1, Elizabeth Blée 1
PMCID: PMC1222791  PMID: 12020347

Abstract

cis-9,10-epoxystearic acid was used as a tool to probe the active sites of epoxide hydrolases (EHs) of mammalian and plant origin. We have compared the stereochemical features of the hydrolysis of this substrate catalysed by soluble and membrane-bound rat liver EHs, by soluble EH (purified to apparent homogeneity) obtained from maize seedlings or celeriac roots, and by recombinant soybean EH expressed in yeast. Plant EHs were found to differ in their enantioselectivity, i.e. their ability to discriminate between the two enantiomers of 9,10-epoxystearic acid. For example, while the maize enzyme hydrated both enantiomers at the same rate, the EH from soybean exhibited very high enantioselectivity in favour of 9R,10S-epoxystearic acid. This latter enzyme also exhibited a strict stereoselectivity, i.e. it hydrolysed the racemic substrate with a very high enantioconvergence, yielding a single chiral diol product, threo-9R,10R-dihydroxystearic acid. Soybean EH shared these distinctive stereochemical features with the membrane-bound rat liver EH. The stereochemical outcome of these enzymes probably results from a stereoselective attack by the nucleophilic residue on the oxirane ring carbon having the (S)-configuration, leading to the presumed (in plant EH) covalent acyl-enzyme intermediate. In sharp contrast, the reactions catalysed by cytosolic rat liver EH exhibited a complete absence of enantioselectivity and enantioconvergence; this latter effect might be ascribed to a regioselective formation of the acyl-enzyme intermediate involving C-10 of 9,10-epoxystearic acid, independent of its configuration. Thus, compared with soybean EH, the active site of rat liver soluble EH displays a very distinct means of anchoring the oxirane ring of the fatty acid epoxides, and therefore appears to be a poor model for mapping the catalytic domain of plant EHs.

Full Text

The Full Text of this article is available as a PDF (189.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arahira M., Nong V. H., Udaka K., Fukazawa C. Purification, molecular cloning and ethylene-inducible expression of a soluble-type epoxide hydrolase from soybean (Glycine max [L.] Merr.). Eur J Biochem. 2000 May;267(9):2649–2657. doi: 10.1046/j.1432-1327.2000.01276.x. [DOI] [PubMed] [Google Scholar]
  2. Arand M., Grant D. F., Beetham J. K., Friedberg T., Oesch F., Hammock B. D. Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis. FEBS Lett. 1994 Feb 7;338(3):251–256. doi: 10.1016/0014-5793(94)80278-5. [DOI] [PubMed] [Google Scholar]
  3. Arand M., Müller F., Mecky A., Hinz W., Urban P., Pompon D., Kellner R., Oesch F. Catalytic triad of microsomal epoxide hydrolase: replacement of Glu404 with Asp leads to a strongly increased turnover rate. Biochem J. 1999 Jan 1;337(Pt 1):37–43. [PMC free article] [PubMed] [Google Scholar]
  4. Arand M., Wagner H., Oesch F. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase. J Biol Chem. 1996 Feb 23;271(8):4223–4229. doi: 10.1074/jbc.271.8.4223. [DOI] [PubMed] [Google Scholar]
  5. Argiriadi M. A., Morisseau C., Hammock B. D., Christianson D. W. Detoxification of environmental mutagens and carcinogens: structure, mechanism, and evolution of liver epoxide hydrolase. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10637–10642. doi: 10.1073/pnas.96.19.10637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Armstrong R. N., Cassidy C. S. New structural and chemical insight into the catalytic mechanism of epoxide hydrolases. Drug Metab Rev. 2000 Aug-Nov;32(3-4):327–338. doi: 10.1081/dmr-100102337. [DOI] [PubMed] [Google Scholar]
  7. Bentley P., Oesch F. Purification of rat liver epoxide hydratase to apparent homogeneity. FEBS Lett. 1975 Nov 15;59(2):291–295. doi: 10.1016/0014-5793(75)80395-4. [DOI] [PubMed] [Google Scholar]
  8. Blée E., Schuber F. Efficient epoxidation of unsaturated fatty acids by a hydroperoxide-dependent oxygenase. J Biol Chem. 1990 Aug 5;265(22):12887–12894. [PubMed] [Google Scholar]
  9. Blée E., Schuber F. Occurrence of fatty acid epoxide hydrolases in soybean (Glycine max). Purification and characterization of the soluble form. Biochem J. 1992 Mar 15;282(Pt 3):711–714. doi: 10.1042/bj2820711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blée E., Schuber F. Regio- and enantioselectivity of soybean fatty acid epoxide hydrolase. J Biol Chem. 1992 Jun 15;267(17):11881–11887. [PubMed] [Google Scholar]
  11. Blée E., Schuber F. Stereocontrolled hydrolysis of the linoleic acid monoepoxide regioisomers catalyzed by soybean epoxide hydrolase. Eur J Biochem. 1995 May 15;230(1):229–234. doi: 10.1111/j.1432-1033.1995.tb20555.x. [DOI] [PubMed] [Google Scholar]
  12. Borhan B., Jones A. D., Pinot F., Grant D. F., Kurth M. J., Hammock B. D. Mechanism of soluble epoxide hydrolase. Formation of an alpha-hydroxy ester-enzyme intermediate through Asp-333. J Biol Chem. 1995 Nov 10;270(45):26923–26930. doi: 10.1074/jbc.270.45.26923. [DOI] [PubMed] [Google Scholar]
  13. Croteau R., Kolattukudy P. E. Biosynthesis of hydroxyfatty acid polymers. Enzymatic hydration of 18-hydroxy-cis-9,10-epoxystearic acid to threo 9,10,18-trihydroxystearic acid by a particulate preparation from apple (Malus pumila). Arch Biochem Biophys. 1975 Sep;170(1):73–81. doi: 10.1016/0003-9861(75)90098-3. [DOI] [PubMed] [Google Scholar]
  14. Guo A., Durner J., Klessig D. F. Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J. 1998 Sep;15(5):647–656. doi: 10.1046/j.1365-313x.1998.00241.x. [DOI] [PubMed] [Google Scholar]
  15. Hamberg M., Fahlstadius P. On the Specificity of a Fatty Acid Epoxygenase in Broad Bean (Vicia faba L.). Plant Physiol. 1992 Jul;99(3):987–995. doi: 10.1104/pp.99.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hamberg M., Hamberg G. Peroxygenase-Catalyzed Fatty Acid Epoxidation in Cereal Seeds (Sequential Oxidation of Linoleic Acid into 9(S),12(S),13(S)-Trihydroxy-10(E)-Octadecenoic Acid). Plant Physiol. 1996 Mar;110(3):807–815. doi: 10.1104/pp.110.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hanzlik R. P., Edelman M., Michaely W. J., Scott G. Enzymatic hydration of (18O)epoxides. Role of nucleophilic mechanisms. J Am Chem Soc. 1976 Mar 31;98(7):1952–1955. doi: 10.1021/ja00423a050. [DOI] [PubMed] [Google Scholar]
  18. Kiyosue T., Beetham J. K., Pinot F., Hammock B. D., Yamaguchi-Shinozaki K., Shinozaki K. Characterization of an Arabidopsis cDNA for a soluble epoxide hydrolase gene that is inducible by auxin and water stress. Plant J. 1994 Aug;6(2):259–269. doi: 10.1046/j.1365-313x.1994.6020259.x. [DOI] [PubMed] [Google Scholar]
  19. Meyer-Almes F. J., Auer M. Enzyme inhibition assays using fluorescence correlation spectroscopy: a new algorithm for the derivation of kcat/KM and Ki values at substrate concentrations much lower than the Michaelis constant. Biochemistry. 2000 Oct 31;39(43):13261–13268. doi: 10.1021/bi000057y. [DOI] [PubMed] [Google Scholar]
  20. Moghaddam M. F., Grant D. F., Cheek J. M., Greene J. F., Williamson K. C., Hammock B. D. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat Med. 1997 May;3(5):562–566. doi: 10.1038/nm0597-562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moghaddam M., Motoba K., Borhan B., Pinot F., Hammock B. D. Novel metabolic pathways for linoleic and arachidonic acid metabolism. Biochim Biophys Acta. 1996 Aug 13;1290(3):327–339. doi: 10.1016/0304-4165(96)00037-2. [DOI] [PubMed] [Google Scholar]
  22. Morisseau C., Beetham J. K., Pinot F., Debernard S., Newman J. W., Hammock B. D. Cress and potato soluble epoxide hydrolases: purification, biochemical characterization, and comparison to mammalian enzymes. Arch Biochem Biophys. 2000 Jun 15;378(2):321–332. doi: 10.1006/abbi.2000.1810. [DOI] [PubMed] [Google Scholar]
  23. Müller F., Arand M., Frank H., Seidel A., Hinz W., Winkler L., Hänel K., Blée E., Beetham J. K., Hammock B. D. Visualization of a covalent intermediate between microsomal epoxide hydrolase, but not cholesterol epoxide hydrolase, and their substrates. Eur J Biochem. 1997 Apr 15;245(2):490–496. doi: 10.1111/j.1432-1033.1997.00490.x. [DOI] [PubMed] [Google Scholar]
  24. Nardini M., Dijkstra B. W. Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol. 1999 Dec;9(6):732–737. doi: 10.1016/s0959-440x(99)00037-8. [DOI] [PubMed] [Google Scholar]
  25. Nardini M., Ridder I. S., Rozeboom H. J., Kalk K. H., Rink R., Janssen D. B., Dijkstra B. W. The x-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1. An enzyme to detoxify harmful epoxides. J Biol Chem. 1999 May 21;274(21):14579–14586. [PubMed] [Google Scholar]
  26. Orsi B. A., Tipton K. F. Kinetic analysis of progress curves. Methods Enzymol. 1979;63:159–183. doi: 10.1016/0076-6879(79)63010-0. [DOI] [PubMed] [Google Scholar]
  27. Pries F., Kingma J., Pentenga M., van Pouderoyen G., Jeronimus-Stratingh C. M., Bruins A. P., Janssen D. B. Site-directed mutagenesis and oxygen isotope incorporation studies of the nucleophilic aspartate of haloalkane dehalogenase. Biochemistry. 1994 Feb 8;33(5):1242–1247. doi: 10.1021/bi00171a026. [DOI] [PubMed] [Google Scholar]
  28. Rink R., Kingma J., Lutje Spelberg J. H., Janssen D. B. Tyrosine residues serve as proton donor in the catalytic mechanism of epoxide hydrolase from Agrobacterium radiobacter. Biochemistry. 2000 May 9;39(18):5600–5613. doi: 10.1021/bi9922392. [DOI] [PubMed] [Google Scholar]
  29. Stapleton A., Beetham J. K., Pinot F., Garbarino J. E., Rockhold D. R., Friedman M., Hammock B. D., Belknap W. R. Cloning and expression of soluble epoxide hydrolase from potato. Plant J. 1994 Aug;6(2):251–258. doi: 10.1046/j.1365-313x.1994.6020251.x. [DOI] [PubMed] [Google Scholar]
  30. Vernet T., Dignard D., Thomas D. Y. A family of yeast expression vectors containing the phage f1 intergenic region. Gene. 1987;52(2-3):225–233. doi: 10.1016/0378-1119(87)90049-7. [DOI] [PubMed] [Google Scholar]
  31. Yamada T., Morisseau C., Maxwell J. E., Argiriadi M. A., Christianson D. W., Hammock B. D. Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase. J Biol Chem. 2000 Jul 28;275(30):23082–23088. doi: 10.1074/jbc.M001464200. [DOI] [PubMed] [Google Scholar]
  32. Zeldin D. C., Kobayashi J., Falck J. R., Winder B. S., Hammock B. D., Snapper J. R., Capdevila J. H. Regio- and enantiofacial selectivity of epoxyeicosatrienoic acid hydration by cytosolic epoxide hydrolase. J Biol Chem. 1993 Mar 25;268(9):6402–6407. [PubMed] [Google Scholar]
  33. Zeldin D. C., Wei S., Falck J. R., Hammock B. D., Snapper J. R., Capdevila J. H. Metabolism of epoxyeicosatrienoic acids by cytosolic epoxide hydrolase: substrate structural determinants of asymmetric catalysis. Arch Biochem Biophys. 1995 Jan 10;316(1):443–451. doi: 10.1006/abbi.1995.1059. [DOI] [PubMed] [Google Scholar]
  34. Zou J., Hallberg B. M., Bergfors T., Oesch F., Arand M., Mowbray S. L., Jones T. A. Structure of Aspergillus niger epoxide hydrolase at 1.8 A resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure. 2000 Feb 15;8(2):111–122. doi: 10.1016/s0969-2126(00)00087-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES