Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):501–510. doi: 10.1042/BJ20020560

A novel role for farnesyl pyrophosphate synthase in fibroblast growth factor-mediated signal transduction.

John F Reilly 1, Shawndra D Martinez 1, Gregory Mickey 1, Pamela A Maher 1
PMCID: PMC1222793  PMID: 12020352

Abstract

Farnesyl pyrophosphate synthase (FPPS) catalyses the formation of a key cellular intermediate in isoprenoid metabolic pathways. Here we describe a novel role for this enzyme in fibroblast growth factor (FGF)-mediated signalling. We demonstrate the binding of FPPS to FGF receptors (FGFRs) using the yeast two-hybrid assay, pull-down assays and co-immunoprecipitation. The interaction between FPPS and FGFR is regulated by the cellular metabolic state and by treatment with FGF-2. Overexpression of FPPS inhibits FGF-2-induced cell proliferation, accompanied by a failure of the FGF-2-mediated induction of cyclins D1 and E. Overexpression of FPPS in fibroblasts also promotes increased farnesylation of Ras, and temporally extends FGF-2-stimulated activation of the Ras/ERK (extracellular-signal-regulated kinase) cascade. These data suggest that, in addition to its role in isoprenoid biosynthesis, FPPS may function as a modulator of the cellular response to FGF treatment.

Full Text

The Full Text of this article is available as a PDF (315.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson P., Marshall C. J., Hall A., Tilbrook P. A. Post-translational modifications of p21rho proteins. J Biol Chem. 1992 Oct 5;267(28):20033–20038. [PubMed] [Google Scholar]
  2. Baird A. Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr Opin Neurobiol. 1994 Feb;4(1):78–86. doi: 10.1016/0959-4388(94)90035-3. [DOI] [PubMed] [Google Scholar]
  3. Bellot F., Crumley G., Kaplow J. M., Schlessinger J., Jaye M., Dionne C. A. Ligand-induced transphosphorylation between different FGF receptors. EMBO J. 1991 Oct;10(10):2849–2854. doi: 10.1002/j.1460-2075.1991.tb07834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  5. Bruenger E., Rilling H. C. Determination of isopentenyl diphosphate and farnesyl diphosphate in tissue samples with a comment on secondary regulation of polyisoprenoid biosynthesis. Anal Biochem. 1988 Sep;173(2):321–327. doi: 10.1016/0003-2697(88)90196-0. [DOI] [PubMed] [Google Scholar]
  6. Burgering B. M., Coffer P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature. 1995 Aug 17;376(6541):599–602. doi: 10.1038/376599a0. [DOI] [PubMed] [Google Scholar]
  7. Chen Z., Sun J., Pradines A., Favre G., Adnane J., Sebti S. M. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J Biol Chem. 2000 Jun 16;275(24):17974–17978. doi: 10.1074/jbc.C000145200. [DOI] [PubMed] [Google Scholar]
  8. Decker S. J. Nerve growth factor-induced growth arrest and induction of p21Cip1/WAF1 in NIH-3T3 cells expressing TrkA. J Biol Chem. 1995 Dec 29;270(52):30841–30844. doi: 10.1074/jbc.270.52.30841. [DOI] [PubMed] [Google Scholar]
  9. Egea J., Espinet C., Comella J. X. Calcium influx activates extracellular-regulated kinase/mitogen-activated protein kinase pathway through a calmodulin-sensitive mechanism in PC12 cells. J Biol Chem. 1999 Jan 1;274(1):75–85. doi: 10.1074/jbc.274.1.75. [DOI] [PubMed] [Google Scholar]
  10. Farnsworth C. C., Gelb M. H., Glomset J. A. Identification of geranylgeranyl-modified proteins in HeLa cells. Science. 1990 Jan 19;247(4940):320–322. doi: 10.1126/science.2296721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feig L. A. Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nat Cell Biol. 1999 Jun;1(2):E25–E27. doi: 10.1038/10018. [DOI] [PubMed] [Google Scholar]
  12. Furfine E. S., Leban J. J., Landavazo A., Moomaw J. F., Casey P. J. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry. 1995 May 23;34(20):6857–6862. doi: 10.1021/bi00020a032. [DOI] [PubMed] [Google Scholar]
  13. Gadbut A. P., Wu L., Tang D., Papageorge A., Watson J. A., Galper J. B. Induction of the cholesterol metabolic pathway regulates the farnesylation of RAS in embryonic chick heart cells: a new role for ras in regulating the expression of muscarinic receptors and G proteins. EMBO J. 1997 Dec 15;16(24):7250–7260. doi: 10.1093/emboj/16.24.7250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goalstone M. L., Draznin B. Effect of insulin on farnesyltransferase activity in 3T3-L1 adipocytes. J Biol Chem. 1996 Nov 1;271(44):27585–27589. doi: 10.1074/jbc.271.44.27585. [DOI] [PubMed] [Google Scholar]
  15. Goalstone M. L., Leitner J. W., Wall K., Dolgonos L., Rother K. I., Accili D., Draznin B. Effect of insulin on farnesyltransferase. Specificity of insulin action and potentiation of nuclear effects of insulin-like growth factor-1, epidermal growth factor, and platelet-derived growth factor. J Biol Chem. 1998 Sep 11;273(37):23892–23896. doi: 10.1074/jbc.273.37.23892. [DOI] [PubMed] [Google Scholar]
  16. Gupta S. D., Mehan R. S., Tansey T. R., Chen H. T., Goping G., Goldberg I., Shechter I. Differential binding of proteins to peroxisomes in rat hepatoma cells: unique association of enzymes involved in isoprenoid metabolism. J Lipid Res. 1999 Sep;40(9):1572–1584. [PubMed] [Google Scholar]
  17. Hamilton M., Liao J., Cathcart M. K., Wolfman A. Constitutive association of c-N-Ras with c-Raf-1 and protein kinase C epsilon in latent signaling modules. J Biol Chem. 2001 May 17;276(31):29079–29090. doi: 10.1074/jbc.M102001200. [DOI] [PubMed] [Google Scholar]
  18. Jackson S. M., Ericsson J., Edwards P. A. Signaling molecules derived from the cholesterol biosynthetic pathway. Subcell Biochem. 1997;28:1–21. doi: 10.1007/978-1-4615-5901-6_1. [DOI] [PubMed] [Google Scholar]
  19. Johnson D. E., Williams L. T. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41. doi: 10.1016/s0065-230x(08)60821-0. [DOI] [PubMed] [Google Scholar]
  20. Joly A., Edwards P. A. Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon farnesyl diphosphate synthase activity. J Biol Chem. 1993 Dec 25;268(36):26983–26989. [PubMed] [Google Scholar]
  21. Klausner R. D., Rouault T. A. A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol Biol Cell. 1993 Jan;4(1):1–5. doi: 10.1091/mbc.4.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klint P., Kanda S., Claesson-Welsh L. Shc and a novel 89-kDa component couple to the Grb2-Sos complex in fibroblast growth factor-2-stimulated cells. J Biol Chem. 1995 Oct 6;270(40):23337–23344. doi: 10.1074/jbc.270.40.23337. [DOI] [PubMed] [Google Scholar]
  23. Kouhara H., Hadari Y. R., Spivak-Kroizman T., Schilling J., Bar-Sagi D., Lax I., Schlessinger J. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell. 1997 May 30;89(5):693–702. doi: 10.1016/s0092-8674(00)80252-4. [DOI] [PubMed] [Google Scholar]
  24. Koyama T., Gotoh Y., Nishino T. Intersubunit location of the active site of farnesyl diphosphate synthase: reconstruction of active enzymes by hybrid-type heteromeric dimers of site-directed mutants. Biochemistry. 2000 Jan 18;39(2):463–469. doi: 10.1021/bi991621b. [DOI] [PubMed] [Google Scholar]
  25. Kremer N. E., D'Arcangelo G., Thomas S. M., DeMarco M., Brugge J. S., Halegoua S. Signal transduction by nerve growth factor and fibroblast growth factor in PC12 cells requires a sequence of src and ras actions. J Cell Biol. 1991 Nov;115(3):809–819. doi: 10.1083/jcb.115.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Krisans S. K., Ericsson J., Edwards P. A., Keller G. A. Farnesyl-diphosphate synthase is localized in peroxisomes. J Biol Chem. 1994 May 13;269(19):14165–14169. [PubMed] [Google Scholar]
  27. Lebowitz P. F., Casey P. J., Prendergast G. C., Thissen J. A. Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J Biol Chem. 1997 Jun 20;272(25):15591–15594. doi: 10.1074/jbc.272.25.15591. [DOI] [PubMed] [Google Scholar]
  28. Liu J. F., Chevet E., Kebache S., Lemaitre G., Barritault D., Larose L., Crépin M. Functional Rac-1 and Nck signaling networks are required for FGF-2-induced DNA synthesis in MCF-7 cells. Oncogene. 1999 Nov 11;18(47):6425–6433. doi: 10.1038/sj.onc.1203027. [DOI] [PubMed] [Google Scholar]
  29. MacNicol A. M., Muslin A. J., Williams L. T. Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell. 1993 May 7;73(3):571–583. doi: 10.1016/0092-8674(93)90143-e. [DOI] [PubMed] [Google Scholar]
  30. Maher P. p38 mitogen-activated protein kinase activation is required for fibroblast growth factor-2-stimulated cell proliferation but not differentiation. J Biol Chem. 1999 Jun 18;274(25):17491–17498. doi: 10.1074/jbc.274.25.17491. [DOI] [PubMed] [Google Scholar]
  31. Marrero P. F., Poulter C. D., Edwards P. A. Effects of site-directed mutagenesis of the highly conserved aspartate residues in domain II of farnesyl diphosphate synthase activity. J Biol Chem. 1992 Oct 25;267(30):21873–21878. [PubMed] [Google Scholar]
  32. Marshall C. J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev. 1994 Feb;4(1):82–89. doi: 10.1016/0959-437x(94)90095-7. [DOI] [PubMed] [Google Scholar]
  33. Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
  34. Mayfield S. Double agent: translational regulation by a transcription factor. Chem Biol. 1996 Jun;3(6):415–418. doi: 10.1016/s1074-5521(96)90088-5. [DOI] [PubMed] [Google Scholar]
  35. Mohammadi M., Honegger A. M., Rotin D., Fischer R., Bellot F., Li W., Dionne C. A., Jaye M., Rubinstein M., Schlessinger J. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol. 1991 Oct;11(10):5068–5078. doi: 10.1128/mcb.11.10.5068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ong S. H., Guy G. R., Hadari Y. R., Laks S., Gotoh N., Schlessinger J., Lax I. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol. 2000 Feb;20(3):979–989. doi: 10.1128/mcb.20.3.979-989.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pasquale E. B., Maher P. A., Singer S. J. Comparative study of the tyrosine phosphorylation of proteins in Swiss 3T3 fibroblasts stimulated by a variety of mitogenic agents. J Cell Physiol. 1988 Oct;137(1):146–156. doi: 10.1002/jcp.1041370118. [DOI] [PubMed] [Google Scholar]
  38. Pumiglia K. M., Decker S. J. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):448–452. doi: 10.1073/pnas.94.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Qui M. S., Green S. H. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron. 1992 Oct;9(4):705–717. doi: 10.1016/0896-6273(92)90033-a. [DOI] [PubMed] [Google Scholar]
  40. Raffioni S., Bradshaw R. A. Activation of phosphatidylinositol 3-kinase by epidermal growth factor, basic fibroblast growth factor, and nerve growth factor in PC12 pheochromocytoma cells. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9121–9125. doi: 10.1073/pnas.89.19.9121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rao K. N. The significance of the cholesterol biosynthetic pathway in cell growth and carcinogenesis (review). Anticancer Res. 1995 Mar-Apr;15(2):309–314. [PubMed] [Google Scholar]
  42. Reilly J. F., Mickey G., Maher P. A. Association of fibroblast growth factor receptor 1 with the adaptor protein Grb14. Characterization of a new receptor binding partner. J Biol Chem. 2000 Mar 17;275(11):7771–7778. doi: 10.1074/jbc.275.11.7771. [DOI] [PubMed] [Google Scholar]
  43. Rivard N., L'Allemain G., Bartek J., Pouysségur J. Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (G0 state) in fibroblasts. J Biol Chem. 1996 Aug 2;271(31):18337–18341. doi: 10.1074/jbc.271.31.18337. [DOI] [PubMed] [Google Scholar]
  44. Sewing A., Wiseman B., Lloyd A. C., Land H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol. 1997 Sep;17(9):5588–5597. doi: 10.1128/mcb.17.9.5588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shao J., Sheng H., DuBois R. N., Beauchamp R. D. Oncogenic Ras-mediated cell growth arrest and apoptosis are associated with increased ubiquitin-dependent cyclin D1 degradation. J Biol Chem. 2000 Jul 28;275(30):22916–22924. doi: 10.1074/jbc.M002235200. [DOI] [PubMed] [Google Scholar]
  46. Takaishi S., Sawada M., Morita Y., Seno H., Fukuzawa H., Chiba T. Identification of a novel alternative splicing of human FGF receptor 4: soluble-form splice variant expressed in human gastrointestinal epithelial cells. Biochem Biophys Res Commun. 2000 Jan 19;267(2):658–662. doi: 10.1006/bbrc.1999.2010. [DOI] [PubMed] [Google Scholar]
  47. Taylor S. J., Shalloway D. Cell cycle-dependent activation of Ras. Curr Biol. 1996 Dec 1;6(12):1621–1627. doi: 10.1016/s0960-9822(02)70785-9. [DOI] [PubMed] [Google Scholar]
  48. Tombes R. M., Auer K. L., Mikkelsen R., Valerie K., Wymann M. P., Marshall C. J., McMahon M., Dent P. The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochem J. 1998 Mar 15;330(Pt 3):1451–1460. doi: 10.1042/bj3301451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Traverse S., Gomez N., Paterson H., Marshall C., Cohen P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J. 1992 Dec 1;288(Pt 2):351–355. doi: 10.1042/bj2880351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tschantz W. R., Furfine E. S., Casey P. J. Substrate binding is required for release of product from mammalian protein farnesyltransferase. J Biol Chem. 1997 Apr 11;272(15):9989–9993. doi: 10.1074/jbc.272.15.9989. [DOI] [PubMed] [Google Scholar]
  51. Zhang F. L., Casey P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241–269. doi: 10.1146/annurev.bi.65.070196.001325. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES