Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):653–661. doi: 10.1042/BJ20020098

Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I.

Arnab Roy Chowdhury 1, Shalini Sharma 1, Suparna Mandal 1, Anindya Goswami 1, Sibabrata Mukhopadhyay 1, Hemanta K Majumder 1
PMCID: PMC1222798  PMID: 12027807

Abstract

Luteolin, a naturally occurring flavonoid, is abundant in our daily dietary intake. It exhibits a wide spectrum of pharmacological properties, but little is known about its biochemical targets other than the fact that it induces topoisomerase II-mediated apoptosis. In the present study, we show that luteolin completely inhibits the catalytic activity of eukaryotic DNA topoisomerase I at a concentration of 40 microM, with an IC50 of 5 microM. Preincubation of enzyme with luteolin before adding a DNA substrate increases the inhibition of the catalytic activity (IC50=0.66 microM). Treatment of DNA with luteolin before addition of topoisomerase I reduces this inhibitory effect. Subsequent fluorescence tests show that luteolin not only interacts directly with the enzyme but also with the substrate DNA, and intercalates at a very high concentration (>250 microM) without binding to the minor groove. Direct interaction between luteolin and DNA does not affect the assembly of the enzyme-DNA complex, as evident from the electrophoretic mobility-shift assays. Here we show that the inhibition of topoisomerase I by luteolin is due to the stabilization of topoisomerase-I DNA-cleavable complexes. Hence, luteolin is similar to camptothecin, a class I inhibitor, with respect to its ability to form the topoisomerase I-mediated 'cleavable complex'. But, unlike camptothecin, luteolin interacts with both free enzyme and substrate DNA. The inhibitory effect of luteolin is translated into concanavalin A-stimulated mouse splenocytes, with the compound inducing SDS-K+-precipitable DNA-topoisomerase complexes. This is the first report on luteolin as an inhibitor of the catalytic activity of topoisomerase I, and our results further support its therapeutic potential as a lead anti-cancer compound that poisons topoisomerases.

Full Text

The Full Text of this article is available as a PDF (209.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baguley B. C., Falkenhaug E. M. The interaction of ethidium with synthetic double-stranded polynucleotides at low ionic strength. Nucleic Acids Res. 1978 Jan;5(1):161–171. doi: 10.1093/nar/5.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boege F., Straub T., Kehr A., Boesenberg C., Christiansen K., Andersen A., Jakob F., Köhrle J. Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J Biol Chem. 1996 Jan 26;271(4):2262–2270. doi: 10.1074/jbc.271.4.2262. [DOI] [PubMed] [Google Scholar]
  3. Bonven B. J., Gocke E., Westergaard O. A high affinity topoisomerase I binding sequence is clustered at DNAase I hypersensitive sites in Tetrahymena R-chromatin. Cell. 1985 Jun;41(2):541–551. doi: 10.1016/s0092-8674(85)80027-1. [DOI] [PubMed] [Google Scholar]
  4. Bridewell D. J., Finlay G. J., Baguley B. C. Differential actions of aclarubicin and doxorubicin: the role of topoisomerase I. Oncol Res. 1997;9(10):535–542. [PubMed] [Google Scholar]
  5. Casagrande F., Darbon J. M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol. 2001 May 15;61(10):1205–1215. doi: 10.1016/s0006-2952(01)00583-4. [DOI] [PubMed] [Google Scholar]
  6. Chakraborty A. K., Majumder H. K. Mode of action of pentavalent antimonials: specific inhibition of type I DNA topoisomerase of Leishmania donovani. Biochem Biophys Res Commun. 1988 Apr 29;152(2):605–611. doi: 10.1016/s0006-291x(88)80081-0. [DOI] [PubMed] [Google Scholar]
  7. Champoux J. J., McConaughy B. L. Purification and characterization of the DNA untwisting enzyme from rat liver. Biochemistry. 1976 Oct 19;15(21):4638–4642. doi: 10.1021/bi00666a014. [DOI] [PubMed] [Google Scholar]
  8. Chen G. L., Yang L., Rowe T. C., Halligan B. D., Tewey K. M., Liu L. F. Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem. 1984 Nov 10;259(21):13560–13566. [PubMed] [Google Scholar]
  9. Chow K. C., Macdonald T. L., Ross W. E. DNA binding by epipodophyllotoxins and N-acyl anthracyclines: implications for mechanism of topoisomerase II inhibition. Mol Pharmacol. 1988 Oct;34(4):467–473. [PubMed] [Google Scholar]
  10. Fortune J. M., Osheroff N. Merbarone inhibits the catalytic activity of human topoisomerase IIalpha by blocking DNA cleavage. J Biol Chem. 1998 Jul 10;273(28):17643–17650. doi: 10.1074/jbc.273.28.17643. [DOI] [PubMed] [Google Scholar]
  11. Harrington J. J., Lieber M. R. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 1994 Mar 1;13(5):1235–1246. doi: 10.1002/j.1460-2075.1994.tb06373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol. 1983 Apr 1;32(7):1141–1148. doi: 10.1016/0006-2952(83)90262-9. [DOI] [PubMed] [Google Scholar]
  13. Hsiang Y. H., Hertzberg R., Hecht S., Liu L. F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985 Nov 25;260(27):14873–14878. [PubMed] [Google Scholar]
  14. Kawaii S., Tomono Y., Katase E., Ogawa K., Yano M. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci Biotechnol Biochem. 1999 May;63(5):896–899. doi: 10.1271/bbb.63.896. [DOI] [PubMed] [Google Scholar]
  15. Kim H. K., Cheon B. S., Kim Y. H., Kim S. Y., Kim H. P. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol. 1999 Sep 1;58(5):759–765. doi: 10.1016/s0006-2952(99)00160-4. [DOI] [PubMed] [Google Scholar]
  16. Kimata M., Inagaki N., Nagai H. Effects of luteolin and other flavonoids on IgE-mediated allergic reactions. Planta Med. 2000 Feb;66(1):25–29. doi: 10.1055/s-2000-11107. [DOI] [PubMed] [Google Scholar]
  17. Kimata M., Shichijo M., Miura T., Serizawa I., Inagaki N., Nagai H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin Exp Allergy. 2000 Apr;30(4):501–508. doi: 10.1046/j.1365-2222.2000.00768.x. [DOI] [PubMed] [Google Scholar]
  18. LePecq J. B., Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol. 1967 Jul 14;27(1):87–106. doi: 10.1016/0022-2836(67)90353-1. [DOI] [PubMed] [Google Scholar]
  19. Li C. J., Averboukh L., Pardee A. B. beta-Lapachone, a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin. J Biol Chem. 1993 Oct 25;268(30):22463–22468. [PubMed] [Google Scholar]
  20. Liu L. F. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–375. doi: 10.1146/annurev.bi.58.070189.002031. [DOI] [PubMed] [Google Scholar]
  21. Mittra B., Saha A., Chowdhury A. R., Pal C., Mandal S., Mukhopadhyay S., Bandyopadhyay S., Majumder H. K. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med. 2000 Jun;6(6):527–541. [PMC free article] [PubMed] [Google Scholar]
  22. Molnár J., Béládi I., Domonkos K., Földeák S., Boda K., Veckenstedt A. Antitumor activity of flavonoids on NK/Ly ascites tumor cells. Neoplasma. 1981;28(1):11–18. [PubMed] [Google Scholar]
  23. Pommier Y., Minford J. K., Schwartz R. E., Zwelling L. A., Kohn K. W. Effects of the DNA intercalators 4'-(9-acridinylamino)methanesulfon-m-anisidide and 2-methyl-9-hydroxyellipticinium on topoisomerase II mediated DNA strand cleavage and strand passage. Biochemistry. 1985 Nov 5;24(23):6410–6416. doi: 10.1021/bi00344a015. [DOI] [PubMed] [Google Scholar]
  24. Post J. F., Varma R. S. Growth inhibitory effects of bioflavonoids and related compounds on human leukemic CEM-C1 and CEM-C7 cells. Cancer Lett. 1992 Dec 24;67(2-3):207–213. doi: 10.1016/0304-3835(92)90145-l. [DOI] [PubMed] [Google Scholar]
  25. Pérez-García F., Adzet T., Cañigueral S. Activity of artichoke leaf extract on reactive oxygen species in human leukocytes. Free Radic Res. 2000 Nov;33(5):661–665. doi: 10.1080/10715760000301171. [DOI] [PubMed] [Google Scholar]
  26. Ray S., Hazra B., Mittra B., Das A., Majumder H. K. Diospyrin, a bisnaphthoquinone: a novel inhibitor of type I DNA topoisomerase of Leishmania donovani. Mol Pharmacol. 1998 Dec;54(6):994–999. doi: 10.1124/mol.54.6.994. [DOI] [PubMed] [Google Scholar]
  27. Roy S., Gold D. P., Leskowitz S. ABA-specific responses are I region restricted by the carriers used for immunization. J Immunol. 1986 May 1;136(9):3160–3165. [PubMed] [Google Scholar]
  28. Syrovets T., Büchele B., Gedig E., Slupsky J. R., Simmet T. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIalpha. Mol Pharmacol. 2000 Jul;58(1):71–81. doi: 10.1124/mol.58.1.71. [DOI] [PubMed] [Google Scholar]
  29. Vrijsen R., Everaert L., Boeyé A. Antiviral activity of flavones and potentiation by ascorbate. J Gen Virol. 1988 Jul;69(Pt 7):1749–1751. doi: 10.1099/0022-1317-69-7-1749. [DOI] [PubMed] [Google Scholar]
  30. Wadkins R. M., Graves D. E. Thermodynamics of the interactions of m-AMSA and o-AMSA with nucleic acids: influence of ionic strength and DNA base composition. Nucleic Acids Res. 1989 Dec 11;17(23):9933–9946. doi: 10.1093/nar/17.23.9933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Waring M. J. DNA modification and cancer. Annu Rev Biochem. 1981;50:159–192. doi: 10.1146/annurev.bi.50.070181.001111. [DOI] [PubMed] [Google Scholar]
  32. Wollenweber E. Occurrence of flavonoid aglycones in medicinal plants. Prog Clin Biol Res. 1988;280:45–55. [PubMed] [Google Scholar]
  33. Woynarowski J. M., McHugh M., Sigmund R. D., Beerman T. A. Modulation of topoisomerase II catalytic activity by DNA minor groove binding agents distamycin, Hoechst 33258, and 4',6-diamidine-2-phenylindole. Mol Pharmacol. 1989 Feb;35(2):177–182. [PubMed] [Google Scholar]
  34. Yamashita N., Kawanishi S. Distinct mechanisms of DNA damage in apoptosis induced by quercetin and luteolin. Free Radic Res. 2000 Nov;33(5):623–633. doi: 10.1080/10715760000301141. [DOI] [PubMed] [Google Scholar]
  35. Yamashita Y., Kawada S., Nakano H. Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids, genistein and orobol. Biochem Pharmacol. 1990 Feb 15;39(4):737–744. doi: 10.1016/0006-2952(90)90153-c. [DOI] [PubMed] [Google Scholar]
  36. Yoshida M., Sakai T., Hosokawa N., Marui N., Matsumoto K., Fujioka A., Nishino H., Aoike A. The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Lett. 1990 Jan 15;260(1):10–13. doi: 10.1016/0014-5793(90)80053-l. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES