Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):565–571. doi: 10.1042/BJ20020469

Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies.

Mika B Jekabsons 1, Karim S Echtay 1, Martin D Brand 1
PMCID: PMC1222799  PMID: 12030845

Abstract

Experiments were performed to test the hypothesis that recombinant human uncoupling protein-2 (UCP2) ectopically expressed in bacterial inclusion bodies binds nucleotides in a manner identical with the nucleotide-inhibited uncoupling that is observed in kidney mitochondria. For this, sarkosyl-solubilized UCP2 inclusion bodies were treated with the polyoxyethylene ether detergent C12E9 and hydroxyapatite. Protein recovered from hydroxyapatite chromatography was approx. 90% pure UCP2, as judged by Coomassie Blue and silver staining of polyacrylamide gels. Using fluorescence resonance energy transfer, N-methylanthraniloyl-tagged purine nucleoside di- and tri-phosphates exhibited enhanced fluorescence with purified UCP2. Dissociation constants determined by least-squares non-linear regression indicated that the affinity of UCP2 for these fluorescently tagged nucleotides was 3-5 microM or perhaps an order of magnitude stronger, depending on the model used. Competition experiments with [8-14C]ATP demonstrated that UCP2 binds unmodified purine and pyrimidine nucleoside triphosphates with 2-5 microM affinity. Affinities for ADP and GDP were approx. 10-fold lower. These data indicate that: UCP2 (a) is at least partially refolded from sarkosyl-solubilized bacterial inclusion bodies by a two-step treatment with C12E9 detergent and hydroxyapatite; (b) binds purine and pyrimidine nucleoside triphosphates with low micromolar affinity; (c) binds GDP with the same affinity as GDP inhibits superoxide-stimulated uncoupling by kidney mitochondria; and (d) exhibits a different nucleotide preference than kidney mitochondria.

Full Text

The Full Text of this article is available as a PDF (157.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Echtay K. S., Winkler E., Frischmuth K., Klingenberg M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1416–1421. doi: 10.1073/pnas.98.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Echtay Karim S., Roussel Damien, St-Pierre Julie, Jekabsons Mika B., Cadenas Susana, Stuart Jeff A., Harper James A., Roebuck Stephen J., Morrison Alastair, Pickering Susan. Superoxide activates mitochondrial uncoupling proteins. Nature. 2002 Jan 3;415(6867):96–99. doi: 10.1038/415096a. [DOI] [PubMed] [Google Scholar]
  3. Flatmark T., Pedersen J. I. Brown adipose tissue mitochondria. Biochim Biophys Acta. 1975 Mar 31;416(1):53–103. doi: 10.1016/0304-4173(75)90013-0. [DOI] [PubMed] [Google Scholar]
  4. Fleury C., Neverova M., Collins S., Raimbault S., Champigny O., Levi-Meyrueis C., Bouillaud F., Seldin M. F., Surwit R. S., Ricquier D. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997 Mar;15(3):269–272. doi: 10.1038/ng0397-269. [DOI] [PubMed] [Google Scholar]
  5. Heaton G. M., Nicholls D. G. The structural specificity of the nucleotide-binding site and the reversible nature of the inhibition of proton conductance induced by bound nucleotides in brown-adipose-tissue mitochondria. Biochem Soc Trans. 1977;5(1):210–212. doi: 10.1042/bst0050210. [DOI] [PubMed] [Google Scholar]
  6. Huang S. G., Klingenberg M. Fluorescent nucleotide derivatives as specific probes for the uncoupling protein: thermodynamics and kinetics of binding and the control by pH. Biochemistry. 1995 Jan 10;34(1):349–360. doi: 10.1021/bi00001a043. [DOI] [PubMed] [Google Scholar]
  7. Jabůrek M., Varecha M., Gimeno R. E., Dembski M., Jezek P., Zhang M., Burn P., Tartaglia L. A., Garlid K. D. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem. 1999 Sep 10;274(37):26003–26007. doi: 10.1074/jbc.274.37.26003. [DOI] [PubMed] [Google Scholar]
  8. Klingenberg M. Nucleotide binding to uncoupling protein. Mechanism of control by protonation. Biochemistry. 1988 Jan 26;27(2):781–791. doi: 10.1021/bi00402a044. [DOI] [PubMed] [Google Scholar]
  9. Lin C. S., Klingenberg M. Characteristics of the isolated purine nucleotide binding protein from brown fat mitochondria. Biochemistry. 1982 Jun 8;21(12):2950–2956. doi: 10.1021/bi00541a023. [DOI] [PubMed] [Google Scholar]
  10. Lin C. S., Klingenberg M. Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 1980 May 5;113(2):299–303. doi: 10.1016/0014-5793(80)80613-2. [DOI] [PubMed] [Google Scholar]
  11. Nicholls D. G. Brown adipose tissue mitochondria. Biochim Biophys Acta. 1979 Jul 3;549(1):1–29. doi: 10.1016/0304-4173(79)90016-8. [DOI] [PubMed] [Google Scholar]
  12. Pecqueur C., Alves-Guerra M. C., Gelly C., Levi-Meyrueis C., Couplan E., Collins S., Ricquier D., Bouillaud F., Miroux B. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem. 2000 Nov 29;276(12):8705–8712. doi: 10.1074/jbc.M006938200. [DOI] [PubMed] [Google Scholar]
  13. Pedersen J. I. Coupled endogenous respiration in brown adipose tissue mitochondria. Eur J Biochem. 1970 Sep;16(1):12–18. doi: 10.1111/j.1432-1033.1970.tb01047.x. [DOI] [PubMed] [Google Scholar]
  14. Rial E., González-Barroso M., Fleury C., Iturrizaga S., Sanchis D., Jiménez-Jiménez J., Ricquier D., Goubern M., Bouillaud F. Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J. 1999 Nov 1;18(21):5827–5833. doi: 10.1093/emboj/18.21.5827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schroers A., Burkovski A., Wohlrab H., Krämer R. The phosphate carrier from yeast mitochondria. Dimerization is a prerequisite for function. J Biol Chem. 1998 Jun 5;273(23):14269–14276. doi: 10.1074/jbc.273.23.14269. [DOI] [PubMed] [Google Scholar]
  16. Stuart J. A., Harper J. A., Brindle K. M., Jekabsons M. B., Brand M. D. Physiological levels of mammalian uncoupling protein 2 do not uncouple yeast mitochondria. J Biol Chem. 2001 Feb 22;276(21):18633–18639. doi: 10.1074/jbc.M011566200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES