Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):557–564. doi: 10.1042/BJ20020322

The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase.

Sébastien Léon 1, Brigitte Touraine 1, Jean-François Briat 1, Stéphane Lobréaux 1
PMCID: PMC1222802  PMID: 12033984

Abstract

NifS-like proteins are cysteine desulphurases required for the mobilization of sulphur from cysteine. They are present in all organisms, where they are involved in iron-sulphur (Fe-S) cluster biosynthesis. In eukaryotes, these enzymes are present in mitochondria, which are the major site for Fe-S cluster assembly. The genome of the model plant Arabidopsis thaliana contains two putative NifS-like proteins. A cDNA corresponding to one of them was cloned by reverse-transcription PCR, and named AtNFS2. The corresponding transcript is expressed in many plant tissues. It encodes a protein highly related (75% similarity) to the slr0077-gene product from Synechocystis PCC 6803, and is predicted to be targeted to plastids. Indeed, a chimaeric AtNFS2-GFP fusion protein, containing one-third of AtNFS2 from its N-terminal end, was addressed to chloroplasts. Overproduction in Escherichia coli and purification of recombinant AtNFS2 protein enabled one to demonstrate that it bears a pyridoxal 5'-phosphate-dependent cysteine desulphurase activity in vitro, thus being the first NifS homologue characterized to date in plants. The putative physiological functions of this gene are discussed, including the attractive hypothesis of a possible role in Fe-S cluster assembly in plastids.

Full Text

The Full Text of this article is available as a PDF (288.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Amrani L., Primus J., Glatigny A., Arcangeli L., Scazzocchio C., Finnerty V. Comparison of the sequences of the Aspergillus nidulans hxB and Drosophila melanogaster ma-l genes with nifS from Azotobacter vinelandii suggests a mechanism for the insertion of the terminal sulphur atom in the molybdopterin cofactor. Mol Microbiol. 2000 Oct;38(1):114–125. doi: 10.1046/j.1365-2958.2000.02119.x. [DOI] [PubMed] [Google Scholar]
  3. Belanger F. C., Leustek T., Chu B., Kriz A. L. Evidence for the thiamine biosynthetic pathway in higher-plant plastids and its developmental regulation. Plant Mol Biol. 1995 Nov;29(4):809–821. doi: 10.1007/BF00041170. [DOI] [PubMed] [Google Scholar]
  4. Bittner F., Oreb M., Mendel R. R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem. 2001 Sep 11;276(44):40381–40384. doi: 10.1074/jbc.C100472200. [DOI] [PubMed] [Google Scholar]
  5. Chabregas S. M., Luche D. D., Farias L. P., Ribeiro A. F., van Sluys M. A., Menck C. F., Silva-Filho M. C. Dual targeting properties of the N-terminal signal sequence of Arabidopsis thaliana THI1 protein to mitochondria and chloroplasts. Plant Mol Biol. 2001 Aug;46(6):639–650. doi: 10.1023/a:1011628510711. [DOI] [PubMed] [Google Scholar]
  6. Davis S. J., Vierstra R. D. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol. 1998 Mar;36(4):521–528. doi: 10.1023/a:1005991617182. [DOI] [PubMed] [Google Scholar]
  7. Emanuelsson O., Nielsen H., von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999 May;8(5):978–984. doi: 10.1110/ps.8.5.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emanuelsson O., von Heijne G. Prediction of organellar targeting signals. Biochim Biophys Acta. 2001 Dec 12;1541(1-2):114–119. doi: 10.1016/s0167-4889(01)00145-8. [DOI] [PubMed] [Google Scholar]
  9. Hwang D. M., Dempsey A., Tan K. T., Liew C. C. A modular domain of NifU, a nitrogen fixation cluster protein, is highly conserved in evolution. J Mol Evol. 1996 Nov;43(5):536–540. doi: 10.1007/BF02337525. [DOI] [PubMed] [Google Scholar]
  10. Jaschkowitz K., Seidler A. Role of a NifS-like protein from the cyanobacterium Synechocystis PCC 6803 in the maturation of FeS proteins. Biochemistry. 2000 Mar 28;39(12):3416–3423. doi: 10.1021/bi992147c. [DOI] [PubMed] [Google Scholar]
  11. Jensen L. T., Culotta V. C. Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Mol Cell Biol. 2000 Jun;20(11):3918–3927. doi: 10.1128/mcb.20.11.3918-3927.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Julliard J. H., Douce R. Biosynthesis of the thiazole moiety of thiamin (vitamin B1) in higher plant chloroplasts. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2042–2045. doi: 10.1073/pnas.88.6.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaiser J. T., Clausen T., Bourenkow G. P., Bartunik H. D., Steinbacher S., Huber R. Crystal structure of a NifS-like protein from Thermotoga maritima: implications for iron sulphur cluster assembly. J Mol Biol. 2000 Mar 24;297(2):451–464. doi: 10.1006/jmbi.2000.3581. [DOI] [PubMed] [Google Scholar]
  14. Kato S., Mihara H., Kurihara T., Yoshimura T., Esaki N. Gene cloning, purification, and characterization of two cyanobacterial NifS homologs driving iron-sulfur cluster formation. Biosci Biotechnol Biochem. 2000 Nov;64(11):2412–2419. doi: 10.1271/bbb.64.2412. [DOI] [PubMed] [Google Scholar]
  15. Kaut A., Lange H., Diekert K., Kispal G., Lill R. Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function. J Biol Chem. 2000 May 26;275(21):15955–15961. doi: 10.1074/jbc.M909502199. [DOI] [PubMed] [Google Scholar]
  16. Kim Y. S., Nosaka K., Downs D. M., Kwak J. M., Park D., Chung I. K., Nam H. G. A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase involved in thiamin biosynthesis. Plant Mol Biol. 1998 Aug;37(6):955–966. doi: 10.1023/a:1006030617502. [DOI] [PubMed] [Google Scholar]
  17. Kispal G., Csere P., Prohl C., Lill R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 1999 Jul 15;18(14):3981–3989. doi: 10.1093/emboj/18.14.3981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kolman C., Söll D. SPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing. J Bacteriol. 1993 Mar;175(5):1433–1442. doi: 10.1128/jb.175.5.1433-1442.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Krebs C., Agar J. N., Smith A. D., Frazzon J., Dean D. R., Huynh B. H., Johnson M. K. IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry. 2001 Nov 20;40(46):14069–14080. doi: 10.1021/bi015656z. [DOI] [PubMed] [Google Scholar]
  20. Kushnir S., Babiychuk E., Storozhenko S., Davey M. W., Papenbrock J., De Rycke R., Engler G., Stephan U. W., Lange H., Kispal G. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell. 2001 Jan;13(1):89–100. doi: 10.1105/tpc.13.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Land T., Rouault T. A. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell. 1998 Dec;2(6):807–815. doi: 10.1016/s1097-2765(00)80295-6. [DOI] [PubMed] [Google Scholar]
  23. Lange B. M., Rujan T., Martin W., Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13172–13177. doi: 10.1073/pnas.240454797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lauhon C. T., Kambampati R. The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. J Biol Chem. 2000 Jun 30;275(26):20096–20103. doi: 10.1074/jbc.M002680200. [DOI] [PubMed] [Google Scholar]
  25. Leibrecht I., Kessler D. A novel L-cysteine/cystine C-S-lyase directing [2Fe-2S] cluster formation of Synechocystis ferredoxin. J Biol Chem. 1997 Apr 18;272(16):10442–10447. doi: 10.1074/jbc.272.16.10442. [DOI] [PubMed] [Google Scholar]
  26. Li J., Kogan M., Knight S. A., Pain D., Dancis A. Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J Biol Chem. 1999 Nov 12;274(46):33025–33034. doi: 10.1074/jbc.274.46.33025. [DOI] [PubMed] [Google Scholar]
  27. Lobreaux S., Massenet O., Briat J. F. Iron induces ferritin synthesis in maize plantlets. Plant Mol Biol. 1992 Jul;19(4):563–575. doi: 10.1007/BF00026783. [DOI] [PubMed] [Google Scholar]
  28. Machado C. R., de Oliveira R. L., Boiteux S., Praekelt U. M., Meacock P. A., Menck C. F. Thi1, a thiamine biosynthetic gene in Arabidopsis thaliana, complements bacterial defects in DNA repair. Plant Mol Biol. 1996 Jun;31(3):585–593. doi: 10.1007/BF00042231. [DOI] [PubMed] [Google Scholar]
  29. Marquet A. Enzymology of carbon-sulfur bond formation. Curr Opin Chem Biol. 2001 Oct;5(5):541–549. doi: 10.1016/s1367-5931(00)00249-0. [DOI] [PubMed] [Google Scholar]
  30. Martin W., Stoebe B., Goremykin V., Hapsmann S., Hasegawa M., Kowallik K. V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998 May 14;393(6681):162–165. doi: 10.1038/30234. [DOI] [PubMed] [Google Scholar]
  31. Mihara H., Maeda M., Fujii T., Kurihara T., Hata Y., Esaki N. A nifS-like gene, csdB, encodes an Escherichia coli counterpart of mammalian selenocysteine lyase. Gene cloning, purification, characterization and preliminary x-ray crystallographic studies. J Biol Chem. 1999 May 21;274(21):14768–14772. doi: 10.1074/jbc.274.21.14768. [DOI] [PubMed] [Google Scholar]
  32. Mühlenhoff U., Lill R. Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):370–382. doi: 10.1016/s0005-2728(00)00174-2. [DOI] [PubMed] [Google Scholar]
  33. Nishio K., Nakai M. Transfer of iron-sulfur cluster from NifU to apoferredoxin. J Biol Chem. 2000 Jul 28;275(30):22615–22618. doi: 10.1074/jbc.C000279200. [DOI] [PubMed] [Google Scholar]
  34. Nishio K., Nakai M. Transfer of iron-sulfur cluster from NifU to apoferredoxin. J Biol Chem. 2000 Jul 28;275(30):22615–22618. doi: 10.1074/jbc.C000279200. [DOI] [PubMed] [Google Scholar]
  35. Schwartz C. J., Djaman O., Imlay J. A., Kiley P. J. The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9009–9014. doi: 10.1073/pnas.160261497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Seidler A., Jaschkowitz K., Wollenberg M. Incorporation of iron-sulphur clusters in membrane-bound proteins. Biochem Soc Trans. 2001 Aug;29(Pt 4):418–421. doi: 10.1042/bst0290418. [DOI] [PubMed] [Google Scholar]
  37. Smith R. F., Smith T. F. Pattern-induced multi-sequence alignment (PIMA) algorithm employing secondary structure-dependent gap penalties for use in comparative protein modelling. Protein Eng. 1992 Jan;5(1):35–41. doi: 10.1093/protein/5.1.35. [DOI] [PubMed] [Google Scholar]
  38. Strain J., Lorenz C. R., Bode J., Garland S., Smolen G. A., Ta D. T., Vickery L. E., Culotta V. C. Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron-sulfur cluster assembly. J Biol Chem. 1998 Nov 20;273(47):31138–31144. doi: 10.1074/jbc.273.47.31138. [DOI] [PubMed] [Google Scholar]
  39. Tachezy J., Sánchez L. B., Müller M. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol. 2001 Oct;18(10):1919–1928. doi: 10.1093/oxfordjournals.molbev.a003732. [DOI] [PubMed] [Google Scholar]
  40. Takahashi Y., Mitsui A., Fujita Y., Matsubara H. Roles of ATP and NADPH in formation of the fe-s cluster of spinach ferredoxin. Plant Physiol. 1991 Jan;95(1):104–110. doi: 10.1104/pp.95.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takahashi Y., Mitsui A., Hase T., Matsubara H. Formation of the iron-sulfur cluster of ferredoxin in isolated chloroplasts. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2434–2437. doi: 10.1073/pnas.83.8.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tokumoto U., Takahashi Y. Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron-sulfur proteins. J Biochem. 2001 Jul;130(1):63–71. doi: 10.1093/oxfordjournals.jbchem.a002963. [DOI] [PubMed] [Google Scholar]
  44. Urbina H. D., Silberg J. J., Hoff K. G., Vickery L. E. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J Biol Chem. 2001 Sep 27;276(48):44521–44526. doi: 10.1074/jbc.M106907200. [DOI] [PubMed] [Google Scholar]
  45. Walker M. E., Valentin E., Reid G. A. Transport of the yeast ATP synthase beta-subunit into mitochondria. Effects of amino acid substitutions on targeting. Biochem J. 1990 Feb 15;266(1):227–234. doi: 10.1042/bj2660227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Xiong L., Ishitani M., Lee H., Zhu J. K. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell. 2001 Sep;13(9):2063–2083. doi: 10.1105/TPC.010101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zheng L., Cash V. L., Flint D. H., Dean D. R. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem. 1998 May 22;273(21):13264–13272. doi: 10.1074/jbc.273.21.13264. [DOI] [PubMed] [Google Scholar]
  48. Zheng L., White R. H., Cash V. L., Jack R. F., Dean D. R. Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2754–2758. doi: 10.1073/pnas.90.7.2754. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES