Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):481–490. doi: 10.1042/BJ20020711

Molecular characterization of chicken syndecan-2 proteoglycan.

Ligong Chen 1, John R Couchman 1, Jacqueline Smith 1, Anne Woods 1
PMCID: PMC1222803  PMID: 12038962

Abstract

A partial syndecan-2 sequence (147 bp) was obtained from chicken embryonic fibroblast poly(A)+ RNA by reverse transcription-PCR. This partial sequence was used to produce a 5'-end-labelled probe. A chicken liver cDNA library was screened with this probe, and overlapping clones were obtained encompassing the entire cDNA of 3 kb. The open reading frame encodes a protein of 201 amino acids. The cytoplasmic domain is identical with that of mammalian syndecan-2, and highly similar to those of Xenopus laevis and zebrafish syndecan-2. The transmembrane domain is identical with that of mammalian and zebrafish syndecan-2, and highly similar to that of Xenopus laevis syndecan-2. The ectodomain is 45-62% identical with that of zebrafish, Xenopus laevis and mammalian syndecan-2. Two coding single nucleotide polymorphisms were observed. In vitro transcription and translation yielded a product of 30 kDa. Western blotting of chicken embryonic fibroblast cell lysates with species-specific monoclonal antibody mAb 8.1 showed that chicken syndecan-2 is substituted with heparan sulphate, and that the major form of chicken syndecan-2 isolated from chicken fibroblasts is consistent with the formation of SDS-resistant dimers, which is common for syndecans. A 5'-end-labelled probe hybridized to two mRNA species in chicken embryonic fibroblasts, while Northern analysis with poly(A)+ RNAs from different tissues of chicken embryos showed wide and distinct distributions of chicken syndecan-2 during embryonic development. This pattern was different from that reported for syndecan-4, but consistent with the roles of syndecan-2 in neural maturation and in mesenchymal-matrix interactions.

Full Text

The Full Text of this article is available as a PDF (380.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander C. M., Reichsman F., Hinkes M. T., Lincecum J., Becker K. A., Cumberledge S., Bernfield M. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet. 2000 Jul;25(3):329–332. doi: 10.1038/77108. [DOI] [PubMed] [Google Scholar]
  2. Baciu P. C., Acaster C., Goetinck P. F. Molecular cloning and genomic organization of chicken syndecan-4. J Biol Chem. 1994 Jan 7;269(1):696–703. [PubMed] [Google Scholar]
  3. Bernfield M., Götte M., Park P. W., Reizes O., Fitzgerald M. L., Lincecum J., Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–777. doi: 10.1146/annurev.biochem.68.1.729. [DOI] [PubMed] [Google Scholar]
  4. Cargill M., Altshuler D., Ireland J., Sklar P., Ardlie K., Patil N., Shaw N., Lane C. R., Lim E. P., Kalyanaraman N. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999 Jul;22(3):231–238. doi: 10.1038/10290. [DOI] [PubMed] [Google Scholar]
  5. Cohen A. R., Woods D. F., Marfatia S. M., Walther Z., Chishti A. H., Anderson J. M., Wood D. F. Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol. 1998 Jul 13;142(1):129–138. doi: 10.1083/jcb.142.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins F. S., Brooks L. D., Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 1998 Dec;8(12):1229–1231. doi: 10.1101/gr.8.12.1229. [DOI] [PubMed] [Google Scholar]
  7. Couchman J. R., Chen L., Woods A. Syndecans and cell adhesion. Int Rev Cytol. 2001;207:113–150. doi: 10.1016/s0074-7696(01)07004-8. [DOI] [PubMed] [Google Scholar]
  8. David G., Bai X. M., Van der Schueren B., Marynen P., Cassiman J. J., Van den Berghe H. Spatial and temporal changes in the expression of fibroglycan (syndecan-2) during mouse embryonic development. Development. 1993 Nov;119(3):841–854. doi: 10.1242/dev.119.3.841. [DOI] [PubMed] [Google Scholar]
  9. Echtermeyer F., Streit M., Wilcox-Adelman S., Saoncella S., Denhez F., Detmar M., Goetinck P. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest. 2001 Jan;107(2):R9–R14. doi: 10.1172/JCI10559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ethell I. M., Hagihara K., Miura Y., Irie F., Yamaguchi Y. Synbindin, A novel syndecan-2-binding protein in neuronal dendritic spines. J Cell Biol. 2000 Oct 2;151(1):53–68. doi: 10.1083/jcb.151.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ethell I. M., Irie F., Kalo M. S., Couchman J. R., Pasquale E. B., Yamaguchi Y. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron. 2001 Sep 27;31(6):1001–1013. doi: 10.1016/s0896-6273(01)00440-8. [DOI] [PubMed] [Google Scholar]
  12. Ethell I. M., Yamaguchi Y. Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J Cell Biol. 1999 Feb 8;144(3):575–586. doi: 10.1083/jcb.144.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gould S. E., Upholt W. B., Kosher R. A. Characterization of chicken syndecan-3 as a heparan sulfate proteoglycan and its expression during embryogenesis. Dev Biol. 1995 Apr;168(2):438–451. doi: 10.1006/dbio.1995.1093. [DOI] [PubMed] [Google Scholar]
  14. Granés F., García R., Casaroli-Marano R. P., Castel S., Rocamora N., Reina M., Ureña J. M., Vilaró S. Syndecan-2 induces filopodia by active cdc42Hs. Exp Cell Res. 1999 May 1;248(2):439–456. doi: 10.1006/excr.1999.4437. [DOI] [PubMed] [Google Scholar]
  15. Granés F., Urena J. M., Rocamora N., Vilaró S. Ezrin links syndecan-2 to the cytoskeleton. J Cell Sci. 2000 Apr;113(Pt 7):1267–1276. doi: 10.1242/jcs.113.7.1267. [DOI] [PubMed] [Google Scholar]
  16. Grootjans J. J., Zimmermann P., Reekmans G., Smets A., Degeest G., Dürr J., David G. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13683–13688. doi: 10.1073/pnas.94.25.13683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horowitz A., Simons M. Phosphorylation of the cytoplasmic tail of syndecan-4 regulates activation of protein kinase Calpha. J Biol Chem. 1998 Oct 2;273(40):25548–25551. doi: 10.1074/jbc.273.40.25548. [DOI] [PubMed] [Google Scholar]
  18. Hsueh Y. P., Sheng M. Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. J Neurosci. 1999 Sep 1;19(17):7415–7425. doi: 10.1523/JNEUROSCI.19-17-07415.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ishiguro K., Kadomatsu K., Kojima T., Muramatsu H., Iwase M., Yoshikai Y., Yanada M., Yamamoto K., Matsushita T., Nishimura M. Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice. J Biol Chem. 2001 Oct 3;276(50):47483–47488. doi: 10.1074/jbc.M106268200. [DOI] [PubMed] [Google Scholar]
  20. Ishiguro K., Kadomatsu K., Kojima T., Muramatsu H., Matsuo S., Kusugami K., Saito H., Muramatsu T. Syndecan-4 deficiency increases susceptibility to kappa-carrageenan-induced renal damage. Lab Invest. 2001 Apr;81(4):509–516. doi: 10.1038/labinvest.3780259. [DOI] [PubMed] [Google Scholar]
  21. Ishiguro K., Kadomatsu K., Kojima T., Muramatsu H., Nakamura E., Ito M., Nagasaka T., Kobayashi H., Kusugami K., Saito H. Syndecan-4 deficiency impairs the fetal vessels in the placental labyrinth. Dev Dyn. 2000 Dec;219(4):539–544. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1081>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  22. Kim C. W., Goldberger O. A., Gallo R. L., Bernfield M. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell. 1994 Jul;5(7):797–805. doi: 10.1091/mbc.5.7.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klass C. M., Couchman J. R., Woods A. Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci. 2000 Feb;113(Pt 3):493–506. doi: 10.1242/jcs.113.3.493. [DOI] [PubMed] [Google Scholar]
  24. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kramer Kenneth L., Yost H. Joseph. Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev Cell. 2002 Jan;2(1):115–124. doi: 10.1016/s1534-5807(01)00107-1. [DOI] [PubMed] [Google Scholar]
  26. Kusano Y., Oguri K., Nagayasu Y., Munesue S., Ishihara M., Saiki I., Yonekura H., Yamamoto H., Okayama M. Participation of syndecan 2 in the induction of stress fiber formation in cooperation with integrin alpha5beta1: structural characteristics of heparan sulfate chains with avidity to COOH-terminal heparin-binding domain of fibronectin. Exp Cell Res. 2000 May 1;256(2):434–444. doi: 10.1006/excr.2000.4802. [DOI] [PubMed] [Google Scholar]
  27. Langford J. K., Stanley M. J., Cao D., Sanderson R. D. Multiple heparan sulfate chains are required for optimal syndecan-1 function. J Biol Chem. 1998 Nov 6;273(45):29965–29971. doi: 10.1074/jbc.273.45.29965. [DOI] [PubMed] [Google Scholar]
  28. Lee D., Oh E. S., Woods A., Couchman J. R., Lee W. Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 1998 May 22;273(21):13022–13029. doi: 10.1074/jbc.273.21.13022. [DOI] [PubMed] [Google Scholar]
  29. Longley R. L., Woods A., Fleetwood A., Cowling G. J., Gallagher J. T., Couchman J. R. Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci. 1999 Oct;112(Pt 20):3421–3431. doi: 10.1242/jcs.112.20.3421. [DOI] [PubMed] [Google Scholar]
  30. McFall A. J., Rapraeger A. C. Identification of an adhesion site within the syndecan-4 extracellular protein domain. J Biol Chem. 1997 May 16;272(20):12901–12904. doi: 10.1074/jbc.272.20.12901. [DOI] [PubMed] [Google Scholar]
  31. Oh E. S., Couchman J. R., Woods A. Serine phosphorylation of syndecan-2 proteoglycan cytoplasmic domain. Arch Biochem Biophys. 1997 Aug 1;344(1):67–74. doi: 10.1006/abbi.1997.0180. [DOI] [PubMed] [Google Scholar]
  32. Oh E. S., Woods A., Couchman J. R. Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C. J Biol Chem. 1997 May 2;272(18):11805–11811. doi: 10.1074/jbc.272.18.11805. [DOI] [PubMed] [Google Scholar]
  33. Oh E. S., Woods A., Lim S. T., Theibert A. W., Couchman J. R. Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4,5-bisphosphate coordinately regulate protein kinase C activity. J Biol Chem. 1998 Apr 24;273(17):10624–10629. doi: 10.1074/jbc.273.17.10624. [DOI] [PubMed] [Google Scholar]
  34. Pierce A., Lyon M., Hampson I. N., Cowling G. J., Gallagher J. T. Molecular cloning of the major cell surface heparan sulfate proteoglycan from rat liver. J Biol Chem. 1992 Feb 25;267(6):3894–3900. [PubMed] [Google Scholar]
  35. Reizes O., Lincecum J., Wang Z., Goldberger O., Huang L., Kaksonen M., Ahima R., Hinkes M. T., Barsh G. S., Rauvala H. Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell. 2001 Jul 13;106(1):105–116. doi: 10.1016/s0092-8674(01)00415-9. [DOI] [PubMed] [Google Scholar]
  36. Romarís M., Coomans C., Ceulemans H., Bruystens A. M., Vekemans S., David G. Molecular polymorphism of the syndecans. Identification of a hypo-glycanated murine syndecan-1 splice variant. J Biol Chem. 1999 Jun 25;274(26):18667–18674. doi: 10.1074/jbc.274.26.18667. [DOI] [PubMed] [Google Scholar]
  37. Selleck S. B. Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet. 2000 May;16(5):206–212. doi: 10.1016/s0168-9525(00)01997-1. [DOI] [PubMed] [Google Scholar]
  38. Tomita K., Yamasu K., Suyemitsu T. Cloning and characterization of cDNA for syndecan core protein in sea urchin embryos. Dev Growth Differ. 2000 Oct;42(5):449–458. doi: 10.1046/j.1440-169x.2000.00529.x. [DOI] [PubMed] [Google Scholar]
  39. Utani A., Nomizu M., Matsuura H., Kato K., Kobayashi T., Takeda U., Aota S., Nielsen P. K., Shinkai H. A unique sequence of the laminin alpha 3 G domain binds to heparin and promotes cell adhesion through syndecan-2 and -4. J Biol Chem. 2001 May 23;276(31):28779–28788. doi: 10.1074/jbc.M101420200. [DOI] [PubMed] [Google Scholar]
  40. Woods A., Couchman J. R. Protein kinase C involvement in focal adhesion formation. J Cell Sci. 1992 Feb;101(Pt 2):277–290. doi: 10.1242/jcs.101.2.277. [DOI] [PubMed] [Google Scholar]
  41. Woods A., Couchman J. R. Syndecans: synergistic activators of cell adhesion. Trends Cell Biol. 1998 May;8(5):189–192. doi: 10.1016/s0962-8924(98)01244-6. [DOI] [PubMed] [Google Scholar]
  42. Woods A., Longley R. L., Tumova S., Couchman J. R. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch Biochem Biophys. 2000 Feb 1;374(1):66–72. doi: 10.1006/abbi.1999.1607. [DOI] [PubMed] [Google Scholar]
  43. Xu N., Chen C. Y., Shyu A. B. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol. 1997 Aug;17(8):4611–4621. doi: 10.1128/mcb.17.8.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yung S., Woods A., Chan T. M., Davies M., Williams J. D., Couchman J. R. Syndecan-4 up-regulation in proliferative renal disease is related to microfilament organization. FASEB J. 2001 Jul;15(9):1631–1633. doi: 10.1096/fj.00-0794fje. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES