Abstract
Tripeptidyl peptidase-I (TPP-I) is a lysosomal exopeptidase which removes tripeptides from the N-terminus of small peptides. Mutations in the TPP-I gene result in a lethal neurodegenerative disease, classical late-infantile neuronal ceroid lipofuscinosis (CLN2). This disease is characterized by the accumulation of proteinaceous and autofluorescent material within the lysosomes of neurons, which undergo massive cell death during the course of the disease. The absence of TPP-I may result in the lysosomal accumulation of small peptides and proteins, which eventually compromises lysosomal functions critical to the survival of neurons. To investigate the metabolism of small peptides, we have studied the degradation of cholecystokinin-(29-33)-amide (GWMDF-NH2; cholecystokinin C-terminal pentapeptide) by lysosomal fractions isolated from mouse brain and several other tissues. GWMDF-NH2 is cleaved at only one peptide bond by brain lysosomes, to produce GWM and DF-NH2. Inhibitor studies demonstrate that this reaction is catalysed by TPP-I. In contrast, lysosomal fractions from other mouse tissues additionally cleave a second peptide bond to produce GW and MDF-NH2. Inhibitor studies indicate that this reaction is catalysed by dipeptidyl peptidase-I (DPP-I; cathepsin C). Inhibitors of TPP-I are sufficient to completely block the degradation of GWMDF-NH2 by brain, but inhibitors of both TPP-I and DPP-I are required to completely inhibit the degradation of GWMDF-NH2 by other mouse tissues. Enzyme assays confirm the low activity of DPP-I in brain. An unrelated neuropeptide, neuromedin B, is degraded by a pathway that is partially dependent on TPP-I. These results indicate that TPP-I is required for the partial or complete digestion of certain neuropeptides by brain lysosomes. In the absence of TPP-I, neuropeptides or their degradation products will accumulate in brain lysosomes and may contribute to the pathogenesis of CLN2. Other tissues are spared because they express another peptidase, DPP-I, which has extensive activity on peptides and can compensate for the loss of TPP-I.
Full Text
The Full Text of this article is available as a PDF (196.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angliker H., Wikstrom P., Kirschke H., Shaw E. The inactivation of the cysteinyl exopeptidases cathepsin H and C by affinity-labelling reagents. Biochem J. 1989 Aug 15;262(1):63–68. doi: 10.1042/bj2620063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Araki H., Li Y., Yamamoto Y., Haneda M., Nishi K., Kikkawa R., Ohkubo I. Purification, molecular cloning, and immunohistochemical localization of dipeptidyl peptidase II from the rat kidney and its identity with quiescent cell proline dipeptidase. J Biochem. 2001 Feb;129(2):279–288. doi: 10.1093/oxfordjournals.jbchem.a002855. [DOI] [PubMed] [Google Scholar]
- Authier F., Mort J. S., Bell A. W., Posner B. I., Bergeron J. J. Proteolysis of glucagon within hepatic endosomes by membrane-associated cathepsins B and D. J Biol Chem. 1995 Jun 30;270(26):15798–15807. doi: 10.1074/jbc.270.26.15798. [DOI] [PubMed] [Google Scholar]
- Bernardini F., Warburton M. J. The substrate range of tripeptidyl-peptidase I. Eur J Paediatr Neurol. 2001;5 (Suppl A):69–72. doi: 10.1053/ejpn.2000.0438. [DOI] [PubMed] [Google Scholar]
- Chattopadhyay S., Pearce D. A. Neural and extraneural expression of the neuronal ceroid lipofuscinoses genes CLN1, CLN2, and CLN3: functional implications for CLN3. Mol Genet Metab. 2000 Sep-Oct;71(1-2):207–211. doi: 10.1006/mgme.2000.3056. [DOI] [PubMed] [Google Scholar]
- Dolenc I., Turk B., Pungercic G., Ritonja A., Turk V. Oligomeric structure and substrate induced inhibition of human cathepsin C. J Biol Chem. 1995 Sep 15;270(37):21626–21631. doi: 10.1074/jbc.270.37.21626. [DOI] [PubMed] [Google Scholar]
- Du P. G., Kato S., Li Y. H., Maeda T., Yamane T., Yamamoto S., Fujiwara M., Yamamoto Y., Nishi K., Ohkubo I. Rat tripeptidyl peptidase I: molecular cloning, functional expression, tissue localization and enzymatic characterization. Biol Chem. 2001 Dec;382(12):1715–1725. doi: 10.1515/BC.2001.207. [DOI] [PubMed] [Google Scholar]
- Ezaki J., Takeda-Ezaki M., Kominami E. Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase. J Biochem. 2000 Sep;128(3):509–516. doi: 10.1093/oxfordjournals.jbchem.a022781. [DOI] [PubMed] [Google Scholar]
- Gelb B. D., Shi G. P., Chapman H. A., Desnick R. J. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996 Aug 30;273(5279):1236–1238. doi: 10.1126/science.273.5279.1236. [DOI] [PubMed] [Google Scholar]
- Koike M., Nakanishi H., Saftig P., Ezaki J., Isahara K., Ohsawa Y., Schulz-Schaeffer W., Watanabe T., Waguri S., Kametaka S. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci. 2000 Sep 15;20(18):6898–6906. doi: 10.1523/JNEUROSCI.20-18-06898.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kominami E., Ezaki J., Muno D., Ishido K., Ueno T., Wolfe L. S. Specific storage of subunit c of mitochondrial ATP synthase in lysosomes of neuronal ceroid lipofuscinosis (Batten's disease). J Biochem. 1992 Feb;111(2):278–282. doi: 10.1093/oxfordjournals.jbchem.a123749. [DOI] [PubMed] [Google Scholar]
- Kurachi Y., Oka A., Itoh M., Mizuguchi M., Hayashi M., Takashima S. Distribution and development of CLN2 protein, the late-infantile neuronal ceroid lipofuscinosis gene product. Acta Neuropathol. 2001 Jul;102(1):20–26. doi: 10.1007/s004010000321. [DOI] [PubMed] [Google Scholar]
- Lauritzen C., Pedersen J., Madsen M. T., Justesen J., Martensen P. M., Dahl S. W. Active recombinant rat dipeptidyl aminopeptidase I (cathepsin C) produced using the baculovirus expression system. Protein Expr Purif. 1998 Dec;14(3):434–442. doi: 10.1006/prep.1998.0976. [DOI] [PubMed] [Google Scholar]
- McDonald J. K., Zeitman B. B., Reilly T. J., Ellis S. New observations on the substrate specificity of cathepsin C (dipeptidyl aminopeptidase I). Including the degradation of beta-corticotropin and other peptide hormones. J Biol Chem. 1969 May 25;244(10):2693–2709. [PubMed] [Google Scholar]
- Palmer D. N., Martinus R. D., Cooper S. M., Midwinter G. G., Reid J. C., Jolly R. D. Ovine ceroid lipofuscinosis. The major lipopigment protein and the lipid-binding subunit of mitochondrial ATP synthase have the same NH2-terminal sequence. J Biol Chem. 1989 Apr 5;264(10):5736–5740. [PubMed] [Google Scholar]
- Pham C. T., Armstrong R. J., Zimonjic D. B., Popescu N. C., Payan D. G., Ley T. J. Molecular cloning, chromosomal localization, and expression of murine dipeptidyl peptidase I. J Biol Chem. 1997 Apr 18;272(16):10695–10703. doi: 10.1074/jbc.272.16.10695. [DOI] [PubMed] [Google Scholar]
- Pham C. T., Ley T. J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8627–8632. doi: 10.1073/pnas.96.15.8627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pshezhetsky A. V., Ashmarina M. Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology. Prog Nucleic Acid Res Mol Biol. 2001;69:81–114. doi: 10.1016/s0079-6603(01)69045-7. [DOI] [PubMed] [Google Scholar]
- Rao N. V., Rao G. V., Hoidal J. R. Human dipeptidyl-peptidase I. Gene characterization, localization, and expression. J Biol Chem. 1997 Apr 11;272(15):10260–10265. doi: 10.1074/jbc.272.15.10260. [DOI] [PubMed] [Google Scholar]
- Reinheckel T., Deussing J., Roth W., Peters C. Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem. 2001 May;382(5):735–741. doi: 10.1515/BC.2001.089. [DOI] [PubMed] [Google Scholar]
- Rose C., Vargas F., Facchinetti P., Bourgeat P., Bambal R. B., Bishop P. B., Chan S. M., Moore A. N., Ganellin C. R., Schwartz J. C. Characterization and inhibition of a cholecystokinin-inactivating serine peptidase. Nature. 1996 Apr 4;380(6573):403–409. doi: 10.1038/380403a0. [DOI] [PubMed] [Google Scholar]
- Sleat D. E., Donnelly R. J., Lackland H., Liu C. G., Sohar I., Pullarkat R. K., Lobel P. Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science. 1997 Sep 19;277(5333):1802–1805. doi: 10.1126/science.277.5333.1802. [DOI] [PubMed] [Google Scholar]
- Tarasova N. I., Stauber R. H., Choi J. K., Hudson E. A., Czerwinski G., Miller J. L., Pavlakis G. N., Michejda C. J., Wank S. A. Visualization of G protein-coupled receptor trafficking with the aid of the green fluorescent protein. Endocytosis and recycling of cholecystokinin receptor type A. J Biol Chem. 1997 Jun 6;272(23):14817–14824. doi: 10.1074/jbc.272.23.14817. [DOI] [PubMed] [Google Scholar]
- Thamotharan M., Lombardo Y. B., Bawani S. Z., Adibi S. A. An active mechanism for completion of the final stage of protein degradation in the liver, lysosomal transport of dipeptides. J Biol Chem. 1997 May 2;272(18):11786–11790. doi: 10.1074/jbc.272.18.11786. [DOI] [PubMed] [Google Scholar]
- Tomkinson B. Tripeptidyl peptidases: enzymes that count. Trends Biochem Sci. 1999 Sep;24(9):355–359. doi: 10.1016/s0968-0004(99)01435-8. [DOI] [PubMed] [Google Scholar]
- Toomes C., James J., Wood A. J., Wu C. L., McCormick D., Lench N., Hewitt C., Moynihan L., Roberts E., Woods C. G. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet. 1999 Dec;23(4):421–424. doi: 10.1038/70525. [DOI] [PubMed] [Google Scholar]
- Tyynelä J., Sohar I., Sleat D. E., Gin R. M., Donnelly R. J., Baumann M., Haltia M., Lobel P. A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J. 2000 Jun 15;19(12):2786–2792. doi: 10.1093/emboj/19.12.2786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vines D. J., Warburton M. J. Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I. FEBS Lett. 1999 Jan 25;443(2):131–135. doi: 10.1016/s0014-5793(98)01683-4. [DOI] [PubMed] [Google Scholar]
- Vines D., Warburton M. J. Purification and characterisation of a tripeptidyl aminopeptidase I from rat spleen. Biochim Biophys Acta. 1998 May 19;1384(2):233–242. doi: 10.1016/s0167-4838(98)00012-0. [DOI] [PubMed] [Google Scholar]
- Warburton M. J., Bernardini F. The specificity of lysosomal tripeptidyl peptidase-I determined by its action on angiotensin-II analogues. FEBS Lett. 2001 Jul 6;500(3):145–148. doi: 10.1016/s0014-5793(01)02608-4. [DOI] [PubMed] [Google Scholar]
- Warburton M. J., Kimbell R., Rudland P. S., Ferns S. A., Barraclough R. Control of type IV collagen production in rat mammary epithelial and myoepithelial-like cells. J Cell Physiol. 1986 Jul;128(1):76–84. doi: 10.1002/jcp.1041280113. [DOI] [PubMed] [Google Scholar]
- Wolters P. J., Pham C. T., Muilenburg D. J., Ley T. J., Caughey G. H. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem. 2001 Feb 23;276(21):18551–18556. doi: 10.1074/jbc.M100223200. [DOI] [PubMed] [Google Scholar]
- Zhou X., Thamotharan M., Gangopadhyay A., Serdikoff C., Adibi S. A. Characterization of an oligopeptide transporter in renal lysosomes. Biochim Biophys Acta. 2000 Jun 1;1466(1-2):372–378. doi: 10.1016/s0005-2736(00)00201-7. [DOI] [PubMed] [Google Scholar]