Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):595–601. doi: 10.1042/BJ20020863

Inhibitor specificity of recombinant and endogenous caspase-9.

Ciara A Ryan 1, Henning R Stennicke 1, Victor E Nava 1, Jennifer B Burch 1, J Marie Hardwick 1, Guy S Salvesen 1
PMCID: PMC1222808  PMID: 12067274

Abstract

Apoptosis triggered through the intrinsic pathway by radiation and anti-neoplastic drugs is initiated by the activation of caspase-9. To elucidate control mechanisms in this pathway we used a range of synthetic and natural reagents. The inhibitory potency of acetyl-Asp-Glu-Val-Asp-aldehyde ('Ac-DEVD-CHO'), benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone ('Z-VAD-FMK') and the endogenous caspase inhibitor X-chromosome-linked inhibitor of apoptosis protein ('XIAP') against recombinant caspase-9 were predictive of the efficacy of these compounds in a cell-free system. However, the viral proteins CrmA and p35, although potent inhibitors of recombinant caspase-9, had almost no ability to block caspase-9 in this system. These findings were also mirrored in cell expression studies. We hypothesize that the viral inhibitors CrmA and p35 are excluded from reacting productively with the natural form of active caspase-9 in vivo, making the potency of inhibitors highly context-dependent. This is supported by survival data from a mouse model of apoptosis driven by Sindbis virus expressing either p35 or a catalytic mutant of caspase-9. These results consolidate previous findings that CrmA is a potent inhibitor of caspase-9 in vitro, yet fails to block caspase-9-mediated cell death.

Full Text

The Full Text of this article is available as a PDF (198.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amarante-Mendes G. P., Finucane D. M., Martin S. J., Cotter T. G., Salvesen G. S., Green D. R. Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death Differ. 1998 Apr;5(4):298–306. doi: 10.1038/sj.cdd.4400354. [DOI] [PubMed] [Google Scholar]
  2. Cain K., Brown D. G., Langlais C., Cohen G. M. Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex. J Biol Chem. 1999 Aug 6;274(32):22686–22692. doi: 10.1074/jbc.274.32.22686. [DOI] [PubMed] [Google Scholar]
  3. Deveraux Q. L., Leo E., Stennicke H. R., Welsh K., Salvesen G. S., Reed J. C. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 1999 Oct 1;18(19):5242–5251. doi: 10.1093/emboj/18.19.5242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deveraux Q. L., Roy N., Stennicke H. R., Van Arsdale T., Zhou Q., Srinivasula S. M., Alnemri E. S., Salvesen G. S., Reed J. C. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 1998 Apr 15;17(8):2215–2223. doi: 10.1093/emboj/17.8.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deveraux Q. L., Takahashi R., Salvesen G. S., Reed J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997 Jul 17;388(6639):300–304. doi: 10.1038/40901. [DOI] [PubMed] [Google Scholar]
  6. Ekert P. G., Silke J., Vaux D. L. Caspase inhibitors. Cell Death Differ. 1999 Nov;6(11):1081–1086. doi: 10.1038/sj.cdd.4400594. [DOI] [PubMed] [Google Scholar]
  7. Garcia-Calvo M., Peterson E. P., Leiting B., Ruel R., Nicholson D. W., Thornberry N. A. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem. 1998 Dec 4;273(49):32608–32613. doi: 10.1074/jbc.273.49.32608. [DOI] [PubMed] [Google Scholar]
  8. Hakem R., Hakem A., Duncan G. S., Henderson J. T., Woo M., Soengas M. S., Elia A., de la Pompa J. L., Kagi D., Khoo W. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell. 1998 Aug 7;94(3):339–352. doi: 10.1016/s0092-8674(00)81477-4. [DOI] [PubMed] [Google Scholar]
  9. Hardwick J. M., Levine B. Sindbis virus vector system for functional analysis of apoptosis regulators. Methods Enzymol. 2000;322:492–508. doi: 10.1016/s0076-6879(00)22045-4. [DOI] [PubMed] [Google Scholar]
  10. Hawkins C. J., Yoo S. J., Peterson E. P., Wang S. L., Vernooy S. Y., Hay B. A. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J Biol Chem. 2000 Sep 1;275(35):27084–27093. doi: 10.1074/jbc.M000869200. [DOI] [PubMed] [Google Scholar]
  11. Huntington J. A., Read R. J., Carrell R. W. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000 Oct 19;407(6806):923–926. doi: 10.1038/35038119. [DOI] [PubMed] [Google Scholar]
  12. Kasof G. M., Gomes B. C. Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem. 2000 Oct 9;276(5):3238–3246. doi: 10.1074/jbc.M003670200. [DOI] [PubMed] [Google Scholar]
  13. Krammer P. H. CD95's deadly mission in the immune system. Nature. 2000 Oct 12;407(6805):789–795. doi: 10.1038/35037728. [DOI] [PubMed] [Google Scholar]
  14. Kuida K., Haydar T. F., Kuan C. Y., Gu Y., Taya C., Karasuyama H., Su M. S., Rakic P., Flavell R. A. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell. 1998 Aug 7;94(3):325–337. doi: 10.1016/s0092-8674(00)81476-2. [DOI] [PubMed] [Google Scholar]
  15. Kuida K., Zheng T. S., Na S., Kuan C., Yang D., Karasuyama H., Rakic P., Flavell R. A. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 1996 Nov 28;384(6607):368–372. doi: 10.1038/384368a0. [DOI] [PubMed] [Google Scholar]
  16. Levine B., Goldman J. E., Jiang H. H., Griffin D. E., Hardwick J. M. Bc1-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4810–4815. doi: 10.1073/pnas.93.10.4810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997 Nov 14;91(4):479–489. doi: 10.1016/s0092-8674(00)80434-1. [DOI] [PubMed] [Google Scholar]
  18. Martin S. J., Amarante-Mendes G. P., Shi L., Chuang T. H., Casiano C. A., O'Brien G. A., Fitzgerald P., Tan E. M., Bokoch G. M., Greenberg A. H. The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J. 1996 May 15;15(10):2407–2416. [PMC free article] [PubMed] [Google Scholar]
  19. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  20. Nava V. E., Rosen A., Veliuona M. A., Clem R. J., Levine B., Hardwick J. M. Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J Virol. 1998 Jan;72(1):452–459. doi: 10.1128/jvi.72.1.452-459.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicholson D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999 Nov;6(11):1028–1042. doi: 10.1038/sj.cdd.4400598. [DOI] [PubMed] [Google Scholar]
  22. Orth K., Chinnaiyan A. M., Garg M., Froelich C. J., Dixit V. M. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem. 1996 Jul 12;271(28):16443–16446. [PubMed] [Google Scholar]
  23. Quinn L. M., Dorstyn L., Mills K., Colussi P. A., Chen P., Coombe M., Abrams J., Kumar S., Richardson H. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem. 2000 Dec 22;275(51):40416–40424. doi: 10.1074/jbc.M002935200. [DOI] [PubMed] [Google Scholar]
  24. Rabizadeh S., Ye X., Sperandio S., Wang J. J., Ellerby H. M., Ellerby L. M., Giza C., Andrusiak R. L., Frankowski H., Yaron Y. Neurotrophin dependence domain: a domain required for the mediation of apoptosis by the p75 neurotrophin receptor. J Mol Neurosci. 2000 Dec;15(3):215–229. doi: 10.1385/JMN:15:3:215. [DOI] [PubMed] [Google Scholar]
  25. Renatus M., Stennicke H. R., Scott F. L., Liddington R. C., Salvesen G. S. Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14250–14255. doi: 10.1073/pnas.231465798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Renatus M., Zhou Q., Stennicke H. R., Snipas S. J., Turk D., Bankston L. A., Liddington R. C., Salvesen G. S. Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Structure. 2000 Jul 15;8(7):789–797. doi: 10.1016/s0969-2126(00)00165-9. [DOI] [PubMed] [Google Scholar]
  27. Riedl S. J., Renatus M., Schwarzenbacher R., Zhou Q., Sun C., Fesik S. W., Liddington R. C., Salvesen G. S. Structural basis for the inhibition of caspase-3 by XIAP. Cell. 2001 Mar 9;104(5):791–800. doi: 10.1016/s0092-8674(01)00274-4. [DOI] [PubMed] [Google Scholar]
  28. Rodriguez J., Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 1999 Dec 15;13(24):3179–3184. doi: 10.1101/gad.13.24.3179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roy N., Deveraux Q. L., Takahashi R., Salvesen G. S., Reed J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 1997 Dec 1;16(23):6914–6925. doi: 10.1093/emboj/16.23.6914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Srinivasula S. M., Hegde R., Saleh A., Datta P., Shiozaki E., Chai J., Lee R. A., Robbins P. D., Fernandes-Alnemri T., Shi Y. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature. 2001 Mar 1;410(6824):112–116. doi: 10.1038/35065125. [DOI] [PubMed] [Google Scholar]
  31. Stennicke H. R., Deveraux Q. L., Humke E. W., Reed J. C., Dixit V. M., Salvesen G. S. Caspase-9 can be activated without proteolytic processing. J Biol Chem. 1999 Mar 26;274(13):8359–8362. doi: 10.1074/jbc.274.13.8359. [DOI] [PubMed] [Google Scholar]
  32. Stennicke H. R., Salvesen G. S. Caspase assays. Methods Enzymol. 2000;322:91–100. doi: 10.1016/s0076-6879(00)22010-7. [DOI] [PubMed] [Google Scholar]
  33. Strasser A., Harris A. W., Huang D. C., Krammer P. H., Cory S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 1995 Dec 15;14(24):6136–6147. doi: 10.1002/j.1460-2075.1995.tb00304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sun C., Cai M., Meadows R. P., Xu N., Gunasekera A. H., Herrmann J., Wu J. C., Fesik S. W. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem. 2000 Oct 27;275(43):33777–33781. doi: 10.1074/jbc.M006226200. [DOI] [PubMed] [Google Scholar]
  35. Takahashi R., Deveraux Q., Tamm I., Welsh K., Assa-Munt N., Salvesen G. S., Reed J. C. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem. 1998 Apr 3;273(14):7787–7790. doi: 10.1074/jbc.273.14.7787. [DOI] [PubMed] [Google Scholar]
  36. Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science. 1998 Aug 28;281(5381):1312–1316. doi: 10.1126/science.281.5381.1312. [DOI] [PubMed] [Google Scholar]
  37. Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
  38. Varfolomeev E. E., Schuchmann M., Luria V., Chiannilkulchai N., Beckmann J. S., Mett I. L., Rebrikov D., Brodianski V. M., Kemper O. C., Kollet O. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity. 1998 Aug;9(2):267–276. doi: 10.1016/s1074-7613(00)80609-3. [DOI] [PubMed] [Google Scholar]
  39. Vier J., Fürmann C., Häcker G. Baculovirus P35 protein does not inhibit caspase-9 in a cell-free system of apoptosis. Biochem Biophys Res Commun. 2000 Oct 5;276(3):855–861. doi: 10.1006/bbrc.2000.3560. [DOI] [PubMed] [Google Scholar]
  40. Vucic D., Stennicke H. R., Pisabarro M. T., Salvesen G. S., Dixit V. M. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol. 2000 Nov 2;10(21):1359–1366. doi: 10.1016/s0960-9822(00)00781-8. [DOI] [PubMed] [Google Scholar]
  41. Xu G., Cirilli M., Huang Y., Rich R. L., Myszka D. G., Wu H. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature. 2001 Mar 22;410(6827):494–497. doi: 10.1038/35068604. [DOI] [PubMed] [Google Scholar]
  42. Zheng T. S., Hunot S., Kuida K., Flavell R. A. Caspase knockouts: matters of life and death. Cell Death Differ. 1999 Nov;6(11):1043–1053. doi: 10.1038/sj.cdd.4400593. [DOI] [PubMed] [Google Scholar]
  43. Zhou Q., Krebs J. F., Snipas S. J., Price A., Alnemri E. S., Tomaselli K. J., Salvesen G. S. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry. 1998 Jul 28;37(30):10757–10765. doi: 10.1021/bi980893w. [DOI] [PubMed] [Google Scholar]
  44. Zhou Q., Snipas S., Orth K., Muzio M., Dixit V. M., Salvesen G. S. Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J Biol Chem. 1997 Mar 21;272(12):7797–7800. doi: 10.1074/jbc.272.12.7797. [DOI] [PubMed] [Google Scholar]
  45. Zou H., Henzel W. J., Liu X., Lutschg A., Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997 Aug 8;90(3):405–413. doi: 10.1016/s0092-8674(00)80501-2. [DOI] [PubMed] [Google Scholar]
  46. Zou H., Li Y., Liu X., Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999 Apr 23;274(17):11549–11556. doi: 10.1074/jbc.274.17.11549. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES