Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):673–680. doi: 10.1042/BJ20020372

Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1.

Matthew S Squires 1, Paula M Nixon 1, Simon J Cook 1
PMCID: PMC1222809  PMID: 12069688

Abstract

Serum and growth factors activate both the canonical extracellular signal-regulated kinase (ERK) 1/2 pathway and the ERK5/big mitogen-activated protein kinase 1 (BMK) 1 pathway. Pharmacological inhibition of the ERK1/2 pathway using PD98059 and U0126 prevents cyclin D1 expression and inhibits cell proliferation, arguing that the ERK1/2 pathway is rate limiting for cell-cycle re-entry. However, both PD98059 and U0126 also inhibit the ERK5/BMK1 pathway, raising the possibility that the anti-proliferative effect of such drugs may be due to inhibition of ERK5 or both pathways. Here we characterize the effect of the novel mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, PD184352, on the ERK1/2 and ERK5 pathways in the Chinese hamster fibroblast cell line CCl39. In quiescent cells, serum-stimulated ERK1 activity was completely inhibited by PD184352 with an IC50 below 1 microM, whereas ERK5 activation was unaffected even at 20 microM. Serum-stimulated DNA synthesis and cyclin D1 expression was inhibited by low doses of PD184352, which abolished ERK1 activity but had no effect on ERK5. Similarly, in cycling cells PD184352 caused a dose-dependent G1 arrest and inhibition of cyclin D1 expression at low doses, which inhibited ERK1 but were without effect on ERK5. These results indicate that the anti-proliferative effect of PD184352 is due to inhibition of the classical ERK1/2 pathway and does not require inhibition of the ERK5 pathway.

Full Text

The Full Text of this article is available as a PDF (281.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe J., Kusuhara M., Ulevitch R. J., Berk B. C., Lee J. D. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem. 1996 Jul 12;271(28):16586–16590. doi: 10.1074/jbc.271.28.16586. [DOI] [PubMed] [Google Scholar]
  2. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
  3. Balmanno K., Cook S. J. Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene. 1999 May 20;18(20):3085–3097. doi: 10.1038/sj.onc.1202647. [DOI] [PubMed] [Google Scholar]
  4. Chao T. H., Hayashi M., Tapping R. I., Kato Y., Lee J. D. MEKK3 directly regulates MEK5 activity as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J Biol Chem. 1999 Dec 17;274(51):36035–36038. doi: 10.1074/jbc.274.51.36035. [DOI] [PubMed] [Google Scholar]
  5. Chiariello M., Marinissen M. J., Gutkind J. S. Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol Cell Biol. 2000 Mar;20(5):1747–1758. doi: 10.1128/mcb.20.5.1747-1758.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. English J. M., Pearson G., Baer R., Cobb M. H. Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases. J Biol Chem. 1998 Feb 13;273(7):3854–3860. doi: 10.1074/jbc.273.7.3854. [DOI] [PubMed] [Google Scholar]
  8. English J. M., Pearson G., Hockenberry T., Shivakumar L., White M. A., Cobb M. H. Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. J Biol Chem. 1999 Oct 29;274(44):31588–31592. doi: 10.1074/jbc.274.44.31588. [DOI] [PubMed] [Google Scholar]
  9. English J. M., Vanderbilt C. A., Xu S., Marcus S., Cobb M. H. Isolation of MEK5 and differential expression of alternatively spliced forms. J Biol Chem. 1995 Dec 1;270(48):28897–28902. doi: 10.1074/jbc.270.48.28897. [DOI] [PubMed] [Google Scholar]
  10. Esparís-Ogando Azucena, Díaz-Rodríguez Elena, Montero Juan Carlos, Yuste Laura, Crespo Piero, Pandiella Atanasio. Erk5 participates in neuregulin signal transduction and is constitutively active in breast cancer cells overexpressing ErbB2. Mol Cell Biol. 2002 Jan;22(1):270–285. doi: 10.1128/MCB.22.1.270-285.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Favata M. F., Horiuchi K. Y., Manos E. J., Daulerio A. J., Stradley D. A., Feeser W. S., Van Dyk D. E., Pitts W. J., Earl R. A., Hobbs F. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998 Jul 17;273(29):18623–18632. doi: 10.1074/jbc.273.29.18623. [DOI] [PubMed] [Google Scholar]
  12. Gotoh I., Adachi M., Nishida E. Identification and characterization of a novel MAP kinase kinase kinase, MLTK. J Biol Chem. 2000 Oct 19;276(6):4276–4286. doi: 10.1074/jbc.M008595200. [DOI] [PubMed] [Google Scholar]
  13. Hayashi M., Tapping R. I., Chao T. H., Lo J. F., King C. C., Yang Y., Lee J. D. BMK1 mediates growth factor-induced cell proliferation through direct cellular activation of serum and glucocorticoid-inducible kinase. J Biol Chem. 2001 Jan 31;276(12):8631–8634. doi: 10.1074/jbc.C000838200. [DOI] [PubMed] [Google Scholar]
  14. Kamakura S., Moriguchi T., Nishida E. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem. 1999 Sep 10;274(37):26563–26571. doi: 10.1074/jbc.274.37.26563. [DOI] [PubMed] [Google Scholar]
  15. Kasler H. G., Victoria J., Duramad O., Winoto A. ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain. Mol Cell Biol. 2000 Nov;20(22):8382–8389. doi: 10.1128/mcb.20.22.8382-8389.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kato Y., Kravchenko V. V., Tapping R. I., Han J., Ulevitch R. J., Lee J. D. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 1997 Dec 1;16(23):7054–7066. doi: 10.1093/emboj/16.23.7054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kato Y., Tapping R. I., Huang S., Watson M. H., Ulevitch R. J., Lee J. D. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature. 1998 Oct 15;395(6703):713–716. doi: 10.1038/27234. [DOI] [PubMed] [Google Scholar]
  18. Lee J. D., Ulevitch R. J., Han J. Primary structure of BMK1: a new mammalian map kinase. Biochem Biophys Res Commun. 1995 Aug 15;213(2):715–724. doi: 10.1006/bbrc.1995.2189. [DOI] [PubMed] [Google Scholar]
  19. Lobenhofer E. K., Huper G., Iglehart J. D., Marks J. R. Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis. Cell Growth Differ. 2000 Feb;11(2):99–110. [PubMed] [Google Scholar]
  20. Mody N., Leitch J., Armstrong C., Dixon J., Cohen P. Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett. 2001 Jul 27;502(1-2):21–24. doi: 10.1016/s0014-5793(01)02651-5. [DOI] [PubMed] [Google Scholar]
  21. Pearson G., English J. M., White M. A., Cobb M. H. ERK5 and ERK2 cooperate to regulate NF-kappaB and cell transformation. J Biol Chem. 2000 Dec 15;276(11):7927–7931. doi: 10.1074/jbc.M009764200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sebolt-Leopold J. S. Development of anticancer drugs targeting the MAP kinase pathway. Oncogene. 2000 Dec 27;19(56):6594–6599. doi: 10.1038/sj.onc.1204083. [DOI] [PubMed] [Google Scholar]
  23. Sebolt-Leopold J. S., Dudley D. T., Herrera R., Van Becelaere K., Wiland A., Gowan R. C., Tecle H., Barrett S. D., Bridges A., Przybranowski S. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999 Jul;5(7):810–816. doi: 10.1038/10533. [DOI] [PubMed] [Google Scholar]
  24. Sewing A., Wiseman B., Lloyd A. C., Land H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol. 1997 Sep;17(9):5588–5597. doi: 10.1128/mcb.17.9.5588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sun W., Kesavan K., Schaefer B. C., Garrington T. P., Ware M., Johnson N. L., Gelfand E. W., Johnson G. L. MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway. J Biol Chem. 2000 Nov 9;276(7):5093–5100. doi: 10.1074/jbc.M003719200. [DOI] [PubMed] [Google Scholar]
  26. Woods D., Parry D., Cherwinski H., Bosch E., Lees E., McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol. 1997 Sep;17(9):5598–5611. doi: 10.1128/mcb.17.9.5598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhou G., Bao Z. Q., Dixon J. E. Components of a new human protein kinase signal transduction pathway. J Biol Chem. 1995 May 26;270(21):12665–12669. doi: 10.1074/jbc.270.21.12665. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES