Abstract
The androgen receptor (AR) is a ligand-responsive transcription factor known to play a central role in the pathogenesis of prostate cancer. However, the regulation of AR gene expression in the normal and pathological prostate remains poorly understood. This study focuses on the effect of the phosphoinositide 3-kinase (PI 3-kinase)/Akt axis on AR expression in vas deferens epithelial cells (VDEC), a suitable model to study androgen regulation of gene expression, and LNCaP cells (derived from a metastasis at the left supraclavicular lymph node from a 50-year-old patient with a confirmed diagnosis of metastatic prostate carcinoma). Taken together, our data show for the first time that the PI 3-kinase/Akt pathway is required for basal and dihydrotestosterone-induced AR protein expression in both VDEC and LNCaP. Inhibition of the PI 3-kinase/Akt pathway reduced AR expression and the decline in AR protein level correlated with a decrease in AR mRNA in VDEC but not in LNCaP. Since PI 3-kinase/Akt axis is active in prostate cancer, cross-talk between PI 3-kinase/Akt and AR signalling pathways may have implications for endocrine therapy.
Full Text
The Full Text of this article is available as a PDF (311.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamo M., Roberts C. T., Jr, LeRoith D. How distinct are the insulin and insulin-like growth factor I signalling systems? Biofactors. 1992 Jan;3(3):151–157. [PubMed] [Google Scholar]
- Agarwal R. Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochem Pharmacol. 2000 Oct 15;60(8):1051–1059. doi: 10.1016/s0006-2952(00)00385-3. [DOI] [PubMed] [Google Scholar]
- Altiok S., Batt D., Altiok N., Papautsky A., Downward J., Roberts T. M., Avraham H. Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-Kinase/AKT in breast cancer cells. J Biol Chem. 1999 Nov 5;274(45):32274–32278. doi: 10.1074/jbc.274.45.32274. [DOI] [PubMed] [Google Scholar]
- Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999 Mar 19;96(6):857–868. doi: 10.1016/s0092-8674(00)80595-4. [DOI] [PubMed] [Google Scholar]
- Culig Z., Hobisch A., Cronauer M. V., Radmayr C., Trapman J., Hittmair A., Bartsch G., Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 1994 Oct 15;54(20):5474–5478. [PubMed] [Google Scholar]
- Culig Z., Hobisch A., Hittmair A., Peterziel H., Cato A. C., Bartsch G., Klocker H. Expression, structure, and function of androgen receptor in advanced prostatic carcinoma. Prostate. 1998 Apr 1;35(1):63–70. doi: 10.1002/(sici)1097-0045(19980401)35:1<63::aid-pros9>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
- Cunha G. R., Alarid E. T., Turner T., Donjacour A. A., Boutin E. L., Foster B. A. Normal and abnormal development of the male urogenital tract. Role of androgens, mesenchymal-epithelial interactions, and growth factors. J Androl. 1992 Nov-Dec;13(6):465–475. [PubMed] [Google Scholar]
- Daduang S., Kimura K., Nagata S., Fukui Y. Density dependent elevation of phosphatidylinositol-3 kinase level in rat 3Y1 cells. Biochim Biophys Acta. 1998 Jan 2;1401(1):113–120. doi: 10.1016/s0167-4889(97)00108-0. [DOI] [PubMed] [Google Scholar]
- Dai J. L., Maiorino C. A., Gkonos P. J., Burnstein K. L. Androgenic up-regulation of androgen receptor cDNA expression in androgen-independent prostate cancer cells. Steroids. 1996 Sep;61(9):531–539. doi: 10.1016/s0039-128x(96)00086-4. [DOI] [PubMed] [Google Scholar]
- Du K., Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 1998 Dec 4;273(49):32377–32379. doi: 10.1074/jbc.273.49.32377. [DOI] [PubMed] [Google Scholar]
- El-Alfy M., Luu-The V., Huang X. F., Berger L., Labrie F., Pelletier G. Localization of type 5 17beta-hydroxysteroid dehydrogenase, 3beta-hydroxysteroid dehydrogenase, and androgen receptor in the human prostate by in situ hybridization and immunocytochemistry. Endocrinology. 1999 Mar;140(3):1481–1491. doi: 10.1210/endo.140.3.6585. [DOI] [PubMed] [Google Scholar]
- Farrelly N., Lee Y. J., Oliver J., Dive C., Streuli C. H. Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J Cell Biol. 1999 Mar 22;144(6):1337–1348. doi: 10.1083/jcb.144.6.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garnick M. B. Prostate cancer: screening, diagnosis, and management. Ann Intern Med. 1993 May 15;118(10):804–818. doi: 10.7326/0003-4819-118-10-199305150-00008. [DOI] [PubMed] [Google Scholar]
- Gilmore A. P., Metcalfe A. D., Romer L. H., Streuli C. H. Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol. 2000 Apr 17;149(2):431–446. doi: 10.1083/jcb.149.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gingras A. C., Kennedy S. G., O'Leary M. A., Sonenberg N., Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998 Feb 15;12(4):502–513. doi: 10.1101/gad.12.4.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaacs J. T. Role of androgens in prostatic cancer. Vitam Horm. 1994;49:433–502. doi: 10.1016/s0083-6729(08)61152-8. [DOI] [PubMed] [Google Scholar]
- Kane L. P., Shapiro V. S., Stokoe D., Weiss A. Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol. 1999 Jun 3;9(11):601–604. doi: 10.1016/s0960-9822(99)80265-6. [DOI] [PubMed] [Google Scholar]
- Kemppainen J. A., Lane M. V., Sar M., Wilson E. M. Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones. J Biol Chem. 1992 Jan 15;267(2):968–974. [PubMed] [Google Scholar]
- Kolibaba K. S., Druker B. J. Protein tyrosine kinases and cancer. Biochim Biophys Acta. 1997 Dec 9;1333(3):F217–F248. doi: 10.1016/s0304-419x(97)00022-x. [DOI] [PubMed] [Google Scholar]
- Lin J., Adam R. M., Santiestevan E., Freeman M. R. The phosphatidylinositol 3'-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells. Cancer Res. 1999 Jun 15;59(12):2891–2897. [PubMed] [Google Scholar]
- Lobaccaro J. M., Poujol N., Térouanne B., Georget V., Fabre S., Lumbroso S., Sultan C. Transcriptional interferences between normal or mutant androgen receptors and the activator protein 1--dissection of the androgen receptor functional domains. Endocrinology. 1999 Jan;140(1):350–357. doi: 10.1210/endo.140.1.6418. [DOI] [PubMed] [Google Scholar]
- Manin M., Martinez A., Van Der Schueren B., Reynaert I., Jean C. Acquisition of androgen-mediated expression of mouse vas deferens protein (MVDP) gene in cultured epithelial cells and in vas deferens during postnatal development. J Androl. 2000 Sep-Oct;21(5):641–650. [PubMed] [Google Scholar]
- Manin M., Veyssiere G., Cheyvialle D., Chevalier M., Lecher P., Jean C. In vitro androgenic induction of a major protein in epithelial cell subcultures from mouse vas deferens. Endocrinology. 1992 Nov;131(5):2378–2386. doi: 10.1210/endo.131.5.1385102. [DOI] [PubMed] [Google Scholar]
- Marivoet S., Hertogen M., Verhoeven G., Heyns W. Antibodies against synthetic peptides recognize the human and rat androgen receptor. J Steroid Biochem Mol Biol. 1990 Sep;37(1):39–45. doi: 10.1016/0960-0760(90)90370-z. [DOI] [PubMed] [Google Scholar]
- Navé B. T., Ouwens M., Withers D. J., Alessi D. R., Shepherd P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999 Dec 1;344(Pt 2):427–431. [PMC free article] [PubMed] [Google Scholar]
- Pekarsky Y., Hallas C., Palamarchuk A., Koval A., Bullrich F., Hirata Y., Bichi R., Letofsky J., Croce C. M. Akt phosphorylates and regulates the orphan nuclear receptor Nur77. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3690–3694. doi: 10.1073/pnas.051003198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell P. J., Bennett S., Stricker P. Growth factor involvement in progression of prostate cancer. Clin Chem. 1998 Apr;44(4):705–723. [PubMed] [Google Scholar]
- Sanchez-Margálet V., Goldfine I. D., Vlahos C. J., Sung C. K. Role of phosphatidylinositol-3-kinase in insulin receptor signaling: studies with inhibitor, LY294002. Biochem Biophys Res Commun. 1994 Oct 28;204(2):446–452. doi: 10.1006/bbrc.1994.2480. [DOI] [PubMed] [Google Scholar]
- Songyang Z., Baltimore D., Cantley L. C., Kaplan D. R., Franke T. F. Interleukin 3-dependent survival by the Akt protein kinase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11345–11350. doi: 10.1073/pnas.94.21.11345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taplin M. E., Bubley G. J., Shuster T. D., Frantz M. E., Spooner A. E., Ogata G. K., Keer H. N., Balk S. P. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995 May 25;332(21):1393–1398. doi: 10.1056/NEJM199505253322101. [DOI] [PubMed] [Google Scholar]
- Ueki K., Yamamoto-Honda R., Kaburagi Y., Yamauchi T., Tobe K., Burgering B. M., Coffer P. J., Komuro I., Akanuma Y., Yazaki Y. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J Biol Chem. 1998 Feb 27;273(9):5315–5322. doi: 10.1074/jbc.273.9.5315. [DOI] [PubMed] [Google Scholar]
- Vlahos C. J., Matter W. F., Hui K. Y., Brown R. F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem. 1994 Feb 18;269(7):5241–5248. [PubMed] [Google Scholar]
- Vlietstra R. J., van Alewijk D. C., Hermans K. G., van Steenbrugge G. J., Trapman J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 1998 Jul 1;58(13):2720–2723. [PubMed] [Google Scholar]
- Wainstein M. A., He F., Robinson D., Kung H. J., Schwartz S., Giaconia J. M., Edgehouse N. L., Pretlow T. P., Bodner D. R., Kursh E. D. CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res. 1994 Dec 1;54(23):6049–6052. [PubMed] [Google Scholar]
- Weigel N. L. Steroid hormone receptors and their regulation by phosphorylation. Biochem J. 1996 Nov 1;319(Pt 3):657–667. doi: 10.1042/bj3190657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wen Y., Hu M. C., Makino K., Spohn B., Bartholomeusz G., Yan D. H., Hung M. C. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 2000 Dec 15;60(24):6841–6845. [PubMed] [Google Scholar]
- Yeh S., Lin H. K., Kang H. Y., Thin T. H., Lin M. F., Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5458–5463. doi: 10.1073/pnas.96.10.5458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Kwast T. H., Schalken J., Ruizeveld de Winter J. A., van Vroonhoven C. C., Mulder E., Boersma W., Trapman J. Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer. 1991 May 10;48(2):189–193. doi: 10.1002/ijc.2910480206. [DOI] [PubMed] [Google Scholar]