Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 15;366(Pt 3):921–928. doi: 10.1042/BJ20011764

A novel putative insect chitinase with multiple catalytic domains: hormonal regulation during metamorphosis.

Véronique Royer 1, Stéphane Fraichard 1, Hervé Bouhin 1
PMCID: PMC1222823  PMID: 12059786

Abstract

We have used differential display to identify genes that are regulated by juvenile hormone in the epidermis of the beetle Tenebrio molitor. One of the genes encodes T. molitor chitinase 5 (TmChit5), a chitinase possessing an unusual structure. Sequence analysis of TmChit5 identified five 'chitinase units' of approx. 480 amino acids with similarity to chitinase family 18. These units are separated by less conserved regions containing putative PEST (rich in proline, glutamic acid, serine and threonine) sequences, putative chitin-binding domains and mucin domains. Northern-blot analysis identified a single transcript of approx. 9 kb, whose abundance correlated with that of 20-hydroxyecdysone during metamorphosis. Injection of pupae with 20-hydroxyecdysone alone, or in combination with cycloheximide, indicated that TmChit5 expression is directly induced by the hormone. Further experiments indicated that methoprene (a juvenile hormone analogue) indirectly induced TmChit5 mRNA expression. On the basis of the present results and previous studies, we propose a molecular mechanism for cuticle digestion during the moulting process.

Full Text

The Full Text of this article is available as a PDF (265.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andres A. J., Fletcher J. C., Karim F. D., Thummel C. S. Molecular analysis of the initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription. Dev Biol. 1993 Dec;160(2):388–404. doi: 10.1006/dbio.1993.1315. [DOI] [PubMed] [Google Scholar]
  2. Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol. 1968;22:87–108. doi: 10.1146/annurev.mi.22.100168.000511. [DOI] [PubMed] [Google Scholar]
  3. Bouhin H., Braquart C., Charles J. P., Quennedey B., Delachambre J. Nucleotide sequence of an adult-specific cuticular protein gene from the beetle Tenebrio molitor: effects of 20-hydroxyecdysone on mRNA accumulation. Insect Mol Biol. 1993;2(2):81–88. doi: 10.1111/j.1365-2583.1993.tb00128.x. [DOI] [PubMed] [Google Scholar]
  4. Bouhin H., Charles J. P., Quennedey B., Delachambre J. Developmental profiles of epidermal mRNAs during the pupal-adult molt of Tenebrio molitor and isolation of a cDNA clone encoding an adult cuticular protein: effects of a juvenile hormone analogue. Dev Biol. 1992 Jan;149(1):112–122. doi: 10.1016/0012-1606(92)90268-l. [DOI] [PubMed] [Google Scholar]
  5. Brydon L. J., Gooday G. W., Chappell L. H., King T. P. Chitin in egg shells of Onchocerca gibsoni and Onchocerca volvulus. Mol Biochem Parasitol. 1987 Oct;25(3):267–272. doi: 10.1016/0166-6851(87)90090-9. [DOI] [PubMed] [Google Scholar]
  6. Celano P., Vertino P. M., Casero R. A., Jr Isolation of polyadenylated RNA from cultured cells and intact tissues. Biotechniques. 1993 Jul;15(1):26–28. [PubMed] [Google Scholar]
  7. Delbecque J. P., Hirn M., Delachambre J., De Regg M. Cuticular cycle and molting hormone levels during the metamorphosis of Tenebrio molitor (Insecta Coleoptera). Dev Biol. 1978 May;64(1):11–30. doi: 10.1016/0012-1606(78)90057-x. [DOI] [PubMed] [Google Scholar]
  8. Dubrovsky E. B., Dubrovskaya V. A., Bilderback A. L., Berger E. M. The isolation of two juvenile hormone-inducible genes in Drosophila melanogaster. Dev Biol. 2000 Aug 15;224(2):486–495. doi: 10.1006/dbio.2000.9800. [DOI] [PubMed] [Google Scholar]
  9. Fukamizo T., Kramer K. J., Mueller D. D., Schaefer J., Garbow J., Jacob G. S. Analysis of chitin structure by nuclear magnetic resonance spectroscopy and chitinolytic enzyme digestion. Arch Biochem Biophys. 1986 Aug 15;249(1):15–26. doi: 10.1016/0003-9861(86)90555-2. [DOI] [PubMed] [Google Scholar]
  10. Gum J. R., Jr, Hicks J. W., Toribara N. W., Rothe E. M., Lagace R. E., Kim Y. S. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem. 1992 Oct 25;267(30):21375–21383. [PubMed] [Google Scholar]
  11. Hakala B. E., White C., Recklies A. D. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem. 1993 Dec 5;268(34):25803–25810. [PubMed] [Google Scholar]
  12. Hennig M., Jansonius J. N., Terwisscha van Scheltinga A. C., Dijkstra B. W., Schlesier B. Crystal structure of concanavalin B at 1.65 A resolution. An "inactivated" chitinase from seeds of Canavalia ensiformis. J Mol Biol. 1995 Nov 24;254(2):237–246. doi: 10.1006/jmbi.1995.0614. [DOI] [PubMed] [Google Scholar]
  13. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  15. Hirai M., Yuda M., Shinoda T., Chinzei Y. Identification and cDNA cloning of novel juvenile hormone responsive genes from fat body of the bean bug, Riptortus clavatus by mRNA differential display. Insect Biochem Mol Biol. 1998 Mar;28(3):181–189. doi: 10.1016/s0965-1748(97)00116-1. [DOI] [PubMed] [Google Scholar]
  16. Jindra M., Sehnal F., Riddiford L. M. Isolation, characterization and developmental expression of the ecdysteroid-induced E75 gene of the wax moth Galleria mellonella. Eur J Biochem. 1994 Apr 15;221(2):665–675. doi: 10.1111/j.1432-1033.1994.tb18779.x. [DOI] [PubMed] [Google Scholar]
  17. Jones G., Venkataraman V., Manczak M. Transcriptional regulation of an unusual trypsin-related protein expressed during insect metamorphosis. Insect Biochem Mol Biol. 1993 Oct;23(7):825–829. doi: 10.1016/0965-1748(93)90071-y. [DOI] [PubMed] [Google Scholar]
  18. Kawamura K., Shibata T., Saget O., Peel D., Bryant P. J. A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development. 1999 Jan;126(2):211–219. doi: 10.1242/dev.126.2.211. [DOI] [PubMed] [Google Scholar]
  19. Kramer K. J., Muthukrishnan S. Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol. 1997 Nov;27(11):887–900. doi: 10.1016/s0965-1748(97)00078-7. [DOI] [PubMed] [Google Scholar]
  20. Kuhner M. K., Felsenstein J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol. 1994 May;11(3):459–468. doi: 10.1093/oxfordjournals.molbev.a040126. [DOI] [PubMed] [Google Scholar]
  21. Leah R., Tommerup H., Svendsen I., Mundy J. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem. 1991 Jan 25;266(3):1564–1573. [PubMed] [Google Scholar]
  22. Li F., Barnathan E. S., Karikó K. Rapid method for screening and cloning cDNAs generated in differential mRNA display: application of northern blot for affinity capturing of cDNAs. Nucleic Acids Res. 1994 May 11;22(9):1764–1765. doi: 10.1093/nar/22.9.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liang P., Averboukh L., Pardee A. B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 1993 Jul 11;21(14):3269–3275. doi: 10.1093/nar/21.14.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  25. Mouillet J. F., Delbecque J. P., Quennedey B., Delachambre J. Cloning of two putative ecdysteroid receptor isoforms from Tenebrio molitor and their developmental expression in the epidermis during metamorphosis. Eur J Biochem. 1997 Sep 15;248(3):856–863. doi: 10.1111/j.1432-1033.1997.00856.x. [DOI] [PubMed] [Google Scholar]
  26. Nicolaï M., Bouhin H., Quennedey B., Delachambre J. Molecular cloning and expression of Tenebrio molitor ultraspiracle during metamorphosis and in vivo induction of its phosphorylation by 20-hydroxyecdysone. Insect Mol Biol. 2000 Jun;9(3):241–249. doi: 10.1046/j.1365-2583.2000.00181.x. [DOI] [PubMed] [Google Scholar]
  27. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  28. Pascual N., Bellés X., Delbecque J. P., Hua Y. J., Koolman J. Quantification of ecdysteroids by immunoassay: comparison of enzyme immunoassay and radioimmunoassay. Z Naturforsch C. 1995 Nov-Dec;50(11-12):862–867. doi: 10.1515/znc-1995-11-1219. [DOI] [PubMed] [Google Scholar]
  29. Philippe H., Laurent J. How good are deep phylogenetic trees? Curr Opin Genet Dev. 1998 Dec;8(6):616–623. doi: 10.1016/s0959-437x(98)80028-2. [DOI] [PubMed] [Google Scholar]
  30. Riddiford L. M. Hormonal control of insect epidermal cell commitment in vitro. Nature. 1976 Jan 15;259(5539):115–117. doi: 10.1038/259115a0. [DOI] [PubMed] [Google Scholar]
  31. Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
  32. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  33. Shen Z., Jacobs-Lorena M. Characterization of a novel gut-specific chitinase gene from the human malaria vector Anopheles gambiae. J Biol Chem. 1997 Nov 14;272(46):28895–28900. doi: 10.1074/jbc.272.46.28895. [DOI] [PubMed] [Google Scholar]
  34. Shen Z., Jacobs-Lorena M. Evolution of chitin-binding proteins in invertebrates. J Mol Evol. 1999 Mar;48(3):341–347. doi: 10.1007/pl00006478. [DOI] [PubMed] [Google Scholar]
  35. Terwisscha van Scheltinga A. C., Hennig M., Dijkstra B. W. The 1.8 A resolution structure of hevamine, a plant chitinase/lysozyme, and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18. J Mol Biol. 1996 Sep 20;262(2):243–257. doi: 10.1006/jmbi.1996.0510. [DOI] [PubMed] [Google Scholar]
  36. Thummel C. S. Dueling orphans--interacting nuclear receptors coordinate Drosophila metamorphosis. Bioessays. 1997 Aug;19(8):669–672. doi: 10.1002/bies.950190806. [DOI] [PubMed] [Google Scholar]
  37. Zhou B., Hiruma K., Shinoda T., Riddiford L. M. Juvenile hormone prevents ecdysteroid-induced expression of broad complex RNAs in the epidermis of the tobacco hornworm, Manduca sexta. Dev Biol. 1998 Nov 15;203(2):233–244. doi: 10.1006/dbio.1998.9059. [DOI] [PubMed] [Google Scholar]
  38. de la Vega H., Specht C. A., Liu Y., Robbins P. W. Chitinases are a multi-gene family in Aedes, Anopheles and Drosophila. Insect Mol Biol. 1998 Aug;7(3):233–239. doi: 10.1111/j.1365-2583.1998.00065.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES