Abstract
Once the newly synthesized surface (S)-layer glycoprotein of the halophilic archaeaon Haloferax volcanii has traversed the plasma membrane, the protein undergoes a membrane-related, Mg(2+)-dependent maturation event, revealed as an increase in the apparent molecular mass and hydrophobicity of the protein. To test whether lipid modification of the S-layer glycoprotein could explain these observations, H. volcanii cells were incubated with a radiolabelled precursor of isoprene, [(3)H]mevalonic acid. In Archaea, isoprenoids serve as the major hydrophobic component of archaeal membrane lipids and have been shown to modify other haloarchaeal S-layer glycoproteins, although little is known of the mechanism, site or purpose of such modification. In the present study we report that the H. volcanii S-layer glycoprotein is modified by a derivative of mevalonic acid and that maturation of the protein was prevented upon treatment with mevinolin (lovastatin), an inhibitor of mevalonic acid biosynthesis. These findings suggest that lipid modification of S-layer glycoproteins is a general property of halophilic archaea and, like S-layer glycoprotein glycosylation, lipid-modification of the S-layer glycoproteins takes place on the external cell surface, i.e. following protein translocation across the membrane.
Full Text
The Full Text of this article is available as a PDF (184.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cabrera J. A., Bolds J., Shields P. E., Havel C. M., Watson J. A. Isoprenoid synthesis in Halobacterium halobium. Modulation of 3-hydroxy-3-methylglutaryl coenzyme a concentration in response to mevalonate availability. J Biol Chem. 1986 Mar 15;261(8):3578–3583. [PubMed] [Google Scholar]
- Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
- Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
- Edwards P. A., Ericsson J. Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem. 1999;68:157–185. doi: 10.1146/annurev.biochem.68.1.157. [DOI] [PubMed] [Google Scholar]
- Eichler J. Novel glycoproteins of the halophilic archaeon Haloferax volcanii. Arch Microbiol. 2000 May-Jun;173(5-6):445–448. doi: 10.1007/s002030000152. [DOI] [PubMed] [Google Scholar]
- Eichler J. Post-translational modification of the S-layer glycoprotein occurs following translocation across the plasma membrane of the haloarchaeon Haloferax volcanii. Eur J Biochem. 2001 Aug;268(15):4366–4373. doi: 10.1046/j.1432-1327.2001.02361.x. [DOI] [PubMed] [Google Scholar]
- Eichler Jerry. Archaeal signal peptidases from the genus Thermoplasma: structural and mechanistic hybrids of the bacterial and eukaryal enzymes. J Mol Evol. 2002 Mar;54(3):411–415. doi: 10.1007/s00239-001-0035-8. [DOI] [PubMed] [Google Scholar]
- Kates M. Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia. 1993 Dec 15;49(12):1027–1036. doi: 10.1007/BF01929909. [DOI] [PubMed] [Google Scholar]
- Kessel M., Wildhaber I., Cohen S., Baumeister W. Three-dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead Sea. EMBO J. 1988 May;7(5):1549–1554. doi: 10.1002/j.1460-2075.1988.tb02974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kikuchi A., Sagami H., Ogura K. Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium. J Biol Chem. 1999 Jun 18;274(25):18011–18016. doi: 10.1074/jbc.274.25.18011. [DOI] [PubMed] [Google Scholar]
- Knight G. B., Gudas J. M., Pardee A. B. Cell-cycle-specific interaction of nuclear DNA-binding proteins with a CCAAT sequence from the human thymidine kinase gene. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8350–8354. doi: 10.1073/pnas.84.23.8350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi T., Nishizaki R., Ikezawa H. The presence of GPI-linked protein(s) in an archaeobacterium, Sulfolobus acidocaldarius, closely related to eukaryotes. Biochim Biophys Acta. 1997 Feb 11;1334(1):1–4. doi: 10.1016/s0304-4165(96)00099-2. [DOI] [PubMed] [Google Scholar]
- Kuntz C., Sonnenbichler J., Sonnenbichler I., Sumper M., Zeitler R. Isolation and characterization of dolichol-linked oligosaccharides from Haloferax volcanii. Glycobiology. 1997 Oct;7(7):897–904. doi: 10.1093/glycob/7.7.897. [DOI] [PubMed] [Google Scholar]
- Lam W. L., Doolittle W. F. Mevinolin-resistant mutations identify a promoter and the gene for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the archaebacterium Haloferax volcanii. J Biol Chem. 1992 Mar 25;267(9):5829–5834. [PubMed] [Google Scholar]
- Lechner J., Sumper M. The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem. 1987 Jul 15;262(20):9724–9729. [PubMed] [Google Scholar]
- Lechner J., Wieland F., Sumper M. Transient methylation of dolichyl oligosaccharides is an obligatory step in halobacterial sulfated glycoprotein biosynthesis. J Biol Chem. 1985 Jul 25;260(15):8984–8989. [PubMed] [Google Scholar]
- Mengele R., Sumper M. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J Biol Chem. 1992 Apr 25;267(12):8182–8185. [PubMed] [Google Scholar]
- Mescher M. F., Strominger J. L. Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2687–2691. doi: 10.1073/pnas.73.8.2687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Messner P. Bacterial glycoproteins. Glycoconj J. 1997 Jan;14(1):3–11. doi: 10.1023/a:1018551228663. [DOI] [PubMed] [Google Scholar]
- Messner P., Sleytr U. B. Crystalline bacterial cell-surface layers. Adv Microb Physiol. 1992;33:213–275. doi: 10.1016/s0065-2911(08)60218-0. [DOI] [PubMed] [Google Scholar]
- Mevarech M., Werczberger R. Genetic transfer in Halobacterium volcanii. J Bacteriol. 1985 Apr;162(1):461–462. doi: 10.1128/jb.162.1.461-462.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moens S., Vanderleyden J. Glycoproteins in prokaryotes. Arch Microbiol. 1997 Sep;168(3):169–175. doi: 10.1007/s002030050484. [DOI] [PubMed] [Google Scholar]
- Pugh E. L., Kates M. Acylation of proteins of the archaebacteria Halobacterium cutirubrum and Methanobacterium thermoautotrophicum. Biochim Biophys Acta. 1994 Nov 23;1196(1):38–44. doi: 10.1016/0005-2736(94)90292-5. [DOI] [PubMed] [Google Scholar]
- Sagami H., Kikuchi A., Ogura K. A novel type of protein modification by isoprenoid-derived materials. Diphytanylglycerylated proteins in Halobacteria. J Biol Chem. 1995 Jun 23;270(25):14851–14854. doi: 10.1074/jbc.270.25.14851. [DOI] [PubMed] [Google Scholar]
- Schenk B., Fernandez F., Waechter C. J. The ins(ide) and out(side) of dolichyl phosphate biosynthesis and recycling in the endoplasmic reticulum. Glycobiology. 2001 May;11(5):61R–70R. doi: 10.1093/glycob/11.5.61r. [DOI] [PubMed] [Google Scholar]
- Shelness G. S., Lin L., Nicchitta C. V. Membrane topology and biogenesis of eukaryotic signal peptidase. J Biol Chem. 1993 Mar 5;268(7):5201–5208. [PubMed] [Google Scholar]
- Sinensky M. Recent advances in the study of prenylated proteins. Biochim Biophys Acta. 2000 Apr 12;1484(2-3):93–106. doi: 10.1016/s1388-1981(00)00009-3. [DOI] [PubMed] [Google Scholar]
- Sumper M., Berg E., Mengele R., Strobel I. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol. 1990 Dec;172(12):7111–7118. doi: 10.1128/jb.172.12.7111-7118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sumper M. Halobacterial glycoprotein biosynthesis. Biochim Biophys Acta. 1987 Apr 27;906(1):69–79. doi: 10.1016/0304-4157(87)90005-0. [DOI] [PubMed] [Google Scholar]
- Wakai H., Nakamura S., Kawasaki H., Takada K., Mizutani S., Aono R., Horikoshi K. Cloning and sequencing of the gene encoding the cell surface glycoprotein of Haloarcula japonica strain TR-1. Extremophiles. 1997 Feb;1(1):29–35. doi: 10.1007/s007920050012. [DOI] [PubMed] [Google Scholar]
- Wang J., Maziarz K., Ratnam M. Recognition of the carboxyl-terminal signal for GPI modification requires translocation of its hydrophobic domain across the ER membrane. J Mol Biol. 1999 Mar 12;286(5):1303–1310. doi: 10.1006/jmbi.1999.2584. [DOI] [PubMed] [Google Scholar]
- Zhu B. C., Drake R. R., Schweingruber H., Laine R. A. Inhibition of glycosylation by amphomycin and sugar nucleotide analogs PP36 and PP55 indicates that Haloferax volcanii beta-glucosylates both glycoproteins and glycolipids through lipid-linked sugar intermediates: evidence for three novel glycoproteins and a novel sulfated dihexosyl-archaeol glycolipid. Arch Biochem Biophys. 1995 Jun 1;319(2):355–364. doi: 10.1006/abbi.1995.1305. [DOI] [PubMed] [Google Scholar]