Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 15;366(Pt 3):959–964. doi: 10.1042/BJ20020757

Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation.

Zvia Konrad 1, Jerry Eichler 1
PMCID: PMC1222828  PMID: 12069685

Abstract

Once the newly synthesized surface (S)-layer glycoprotein of the halophilic archaeaon Haloferax volcanii has traversed the plasma membrane, the protein undergoes a membrane-related, Mg(2+)-dependent maturation event, revealed as an increase in the apparent molecular mass and hydrophobicity of the protein. To test whether lipid modification of the S-layer glycoprotein could explain these observations, H. volcanii cells were incubated with a radiolabelled precursor of isoprene, [(3)H]mevalonic acid. In Archaea, isoprenoids serve as the major hydrophobic component of archaeal membrane lipids and have been shown to modify other haloarchaeal S-layer glycoproteins, although little is known of the mechanism, site or purpose of such modification. In the present study we report that the H. volcanii S-layer glycoprotein is modified by a derivative of mevalonic acid and that maturation of the protein was prevented upon treatment with mevinolin (lovastatin), an inhibitor of mevalonic acid biosynthesis. These findings suggest that lipid modification of S-layer glycoproteins is a general property of halophilic archaea and, like S-layer glycoprotein glycosylation, lipid-modification of the S-layer glycoproteins takes place on the external cell surface, i.e. following protein translocation across the membrane.

Full Text

The Full Text of this article is available as a PDF (184.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cabrera J. A., Bolds J., Shields P. E., Havel C. M., Watson J. A. Isoprenoid synthesis in Halobacterium halobium. Modulation of 3-hydroxy-3-methylglutaryl coenzyme a concentration in response to mevalonate availability. J Biol Chem. 1986 Mar 15;261(8):3578–3583. [PubMed] [Google Scholar]
  2. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  3. Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
  4. Edwards P. A., Ericsson J. Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem. 1999;68:157–185. doi: 10.1146/annurev.biochem.68.1.157. [DOI] [PubMed] [Google Scholar]
  5. Eichler J. Novel glycoproteins of the halophilic archaeon Haloferax volcanii. Arch Microbiol. 2000 May-Jun;173(5-6):445–448. doi: 10.1007/s002030000152. [DOI] [PubMed] [Google Scholar]
  6. Eichler J. Post-translational modification of the S-layer glycoprotein occurs following translocation across the plasma membrane of the haloarchaeon Haloferax volcanii. Eur J Biochem. 2001 Aug;268(15):4366–4373. doi: 10.1046/j.1432-1327.2001.02361.x. [DOI] [PubMed] [Google Scholar]
  7. Eichler Jerry. Archaeal signal peptidases from the genus Thermoplasma: structural and mechanistic hybrids of the bacterial and eukaryal enzymes. J Mol Evol. 2002 Mar;54(3):411–415. doi: 10.1007/s00239-001-0035-8. [DOI] [PubMed] [Google Scholar]
  8. Kates M. Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia. 1993 Dec 15;49(12):1027–1036. doi: 10.1007/BF01929909. [DOI] [PubMed] [Google Scholar]
  9. Kessel M., Wildhaber I., Cohen S., Baumeister W. Three-dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead Sea. EMBO J. 1988 May;7(5):1549–1554. doi: 10.1002/j.1460-2075.1988.tb02974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kikuchi A., Sagami H., Ogura K. Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium. J Biol Chem. 1999 Jun 18;274(25):18011–18016. doi: 10.1074/jbc.274.25.18011. [DOI] [PubMed] [Google Scholar]
  11. Knight G. B., Gudas J. M., Pardee A. B. Cell-cycle-specific interaction of nuclear DNA-binding proteins with a CCAAT sequence from the human thymidine kinase gene. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8350–8354. doi: 10.1073/pnas.84.23.8350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kobayashi T., Nishizaki R., Ikezawa H. The presence of GPI-linked protein(s) in an archaeobacterium, Sulfolobus acidocaldarius, closely related to eukaryotes. Biochim Biophys Acta. 1997 Feb 11;1334(1):1–4. doi: 10.1016/s0304-4165(96)00099-2. [DOI] [PubMed] [Google Scholar]
  13. Kuntz C., Sonnenbichler J., Sonnenbichler I., Sumper M., Zeitler R. Isolation and characterization of dolichol-linked oligosaccharides from Haloferax volcanii. Glycobiology. 1997 Oct;7(7):897–904. doi: 10.1093/glycob/7.7.897. [DOI] [PubMed] [Google Scholar]
  14. Lam W. L., Doolittle W. F. Mevinolin-resistant mutations identify a promoter and the gene for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the archaebacterium Haloferax volcanii. J Biol Chem. 1992 Mar 25;267(9):5829–5834. [PubMed] [Google Scholar]
  15. Lechner J., Sumper M. The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem. 1987 Jul 15;262(20):9724–9729. [PubMed] [Google Scholar]
  16. Lechner J., Wieland F., Sumper M. Transient methylation of dolichyl oligosaccharides is an obligatory step in halobacterial sulfated glycoprotein biosynthesis. J Biol Chem. 1985 Jul 25;260(15):8984–8989. [PubMed] [Google Scholar]
  17. Mengele R., Sumper M. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J Biol Chem. 1992 Apr 25;267(12):8182–8185. [PubMed] [Google Scholar]
  18. Mescher M. F., Strominger J. L. Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2687–2691. doi: 10.1073/pnas.73.8.2687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Messner P. Bacterial glycoproteins. Glycoconj J. 1997 Jan;14(1):3–11. doi: 10.1023/a:1018551228663. [DOI] [PubMed] [Google Scholar]
  20. Messner P., Sleytr U. B. Crystalline bacterial cell-surface layers. Adv Microb Physiol. 1992;33:213–275. doi: 10.1016/s0065-2911(08)60218-0. [DOI] [PubMed] [Google Scholar]
  21. Mevarech M., Werczberger R. Genetic transfer in Halobacterium volcanii. J Bacteriol. 1985 Apr;162(1):461–462. doi: 10.1128/jb.162.1.461-462.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moens S., Vanderleyden J. Glycoproteins in prokaryotes. Arch Microbiol. 1997 Sep;168(3):169–175. doi: 10.1007/s002030050484. [DOI] [PubMed] [Google Scholar]
  23. Pugh E. L., Kates M. Acylation of proteins of the archaebacteria Halobacterium cutirubrum and Methanobacterium thermoautotrophicum. Biochim Biophys Acta. 1994 Nov 23;1196(1):38–44. doi: 10.1016/0005-2736(94)90292-5. [DOI] [PubMed] [Google Scholar]
  24. Sagami H., Kikuchi A., Ogura K. A novel type of protein modification by isoprenoid-derived materials. Diphytanylglycerylated proteins in Halobacteria. J Biol Chem. 1995 Jun 23;270(25):14851–14854. doi: 10.1074/jbc.270.25.14851. [DOI] [PubMed] [Google Scholar]
  25. Schenk B., Fernandez F., Waechter C. J. The ins(ide) and out(side) of dolichyl phosphate biosynthesis and recycling in the endoplasmic reticulum. Glycobiology. 2001 May;11(5):61R–70R. doi: 10.1093/glycob/11.5.61r. [DOI] [PubMed] [Google Scholar]
  26. Shelness G. S., Lin L., Nicchitta C. V. Membrane topology and biogenesis of eukaryotic signal peptidase. J Biol Chem. 1993 Mar 5;268(7):5201–5208. [PubMed] [Google Scholar]
  27. Sinensky M. Recent advances in the study of prenylated proteins. Biochim Biophys Acta. 2000 Apr 12;1484(2-3):93–106. doi: 10.1016/s1388-1981(00)00009-3. [DOI] [PubMed] [Google Scholar]
  28. Sumper M., Berg E., Mengele R., Strobel I. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol. 1990 Dec;172(12):7111–7118. doi: 10.1128/jb.172.12.7111-7118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sumper M. Halobacterial glycoprotein biosynthesis. Biochim Biophys Acta. 1987 Apr 27;906(1):69–79. doi: 10.1016/0304-4157(87)90005-0. [DOI] [PubMed] [Google Scholar]
  30. Wakai H., Nakamura S., Kawasaki H., Takada K., Mizutani S., Aono R., Horikoshi K. Cloning and sequencing of the gene encoding the cell surface glycoprotein of Haloarcula japonica strain TR-1. Extremophiles. 1997 Feb;1(1):29–35. doi: 10.1007/s007920050012. [DOI] [PubMed] [Google Scholar]
  31. Wang J., Maziarz K., Ratnam M. Recognition of the carboxyl-terminal signal for GPI modification requires translocation of its hydrophobic domain across the ER membrane. J Mol Biol. 1999 Mar 12;286(5):1303–1310. doi: 10.1006/jmbi.1999.2584. [DOI] [PubMed] [Google Scholar]
  32. Zhu B. C., Drake R. R., Schweingruber H., Laine R. A. Inhibition of glycosylation by amphomycin and sugar nucleotide analogs PP36 and PP55 indicates that Haloferax volcanii beta-glucosylates both glycoproteins and glycolipids through lipid-linked sugar intermediates: evidence for three novel glycoproteins and a novel sulfated dihexosyl-archaeol glycolipid. Arch Biochem Biophys. 1995 Jun 1;319(2):355–364. doi: 10.1006/abbi.1995.1305. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES