Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 15;366(Pt 3):721–728. doi: 10.1042/BJ20020654

A mammalian Rho-specific guanine-nucleotide exchange factor (p164-RhoGEF) without a pleckstrin homology domain.

Ulrich Rümenapp 1, Andrea Freichel-Blomquist 1, Burkhard Wittinghofer 1, Karl H Jakobs 1, Thomas Wieland 1
PMCID: PMC1222833  PMID: 12071859

Abstract

Rho GTPases, which are activated by specific guanine-nucleotide exchange factors (GEFs), play pivotal roles in several cellular functions. We identified a recently cloned human cDNA, namely KIAA0337, encoding a protein containing 1510 amino acids (p164). It contains a RhoGEF-specific Dbl homology (DH) domain but lacks their typical pleckstrin homology domain. The expression of the mRNA encoding p164 was found to be at least 4-fold higher in the heart than in other tissues. Recombinant p164 interacted with and induced GDP/GTP exchange at RhoA but not at Rac1 or Cdc42. p164-DeltaC and p164-DeltaN are p164 mutants that are truncated at the C- and N-termini respectively but contain the DH domain. In contrast with the full-length p164, expression of p164-DeltaC and p164-DeltaN strongly induced actin stress fibre formation and activated serum response factor-mediated and Rho-dependent gene transcription. Interestingly, p164-DeltaN2, a mutant containing the C-terminus but having a defective DH domain, bound to p164-DeltaC and suppressed the p164-DeltaC-induced gene transcription. Overexpression of the full-length p164 inhibited M(3) muscarinic receptor-induced gene transcription, whereas co-expression with Gbeta(1)gamma(2) dimers induced transcriptional activity. It is concluded that p164-RhoGEF is a Rho-specific GEF with novel structural and regulatory properties and predominant expression in the heart. Apparently, its N- and C-termini interact with each other, thereby inhibiting its GEF activity.

Full Text

The Full Text of this article is available as a PDF (419.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghazadeh B., Lowry W. E., Huang X. Y., Rosen M. K. Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell. 2000 Sep 1;102(5):625–633. doi: 10.1016/s0092-8674(00)00085-4. [DOI] [PubMed] [Google Scholar]
  2. Aoki H., Izumo S., Sadoshima J. Angiotensin II activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res. 1998 Apr 6;82(6):666–676. doi: 10.1161/01.res.82.6.666. [DOI] [PubMed] [Google Scholar]
  3. Bashaw G. J., Hu H., Nobes C. D., Goodman C. S. A novel Dbl family RhoGEF promotes Rho-dependent axon attraction to the central nervous system midline in Drosophila and overcomes Robo repulsion. J Cell Biol. 2001 Dec 24;155(7):1117–1122. doi: 10.1083/jcb.200110077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bi F., Debreceni B., Zhu K., Salani B., Eva A., Zheng Y. Autoinhibition mechanism of proto-Dbl. Mol Cell Biol. 2001 Mar;21(5):1463–1474. doi: 10.1128/MCB.21.5.1463-1474.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blomberg N., Baraldi E., Nilges M., Saraste M. The PH superfold: a structural scaffold for multiple functions. Trends Biochem Sci. 1999 Nov;24(11):441–445. doi: 10.1016/s0968-0004(99)01472-3. [DOI] [PubMed] [Google Scholar]
  6. Blomquist A., Schwörer G., Schablowski H., Psoma A., Lehnen M., Jakobs K. H., Rümenapp U. Identification and characterization of a novel Rho-specific guanine nucleotide exchange factor. Biochem J. 2000 Dec 1;352(Pt 2):319–325. [PMC free article] [PubMed] [Google Scholar]
  7. Cachero T. G., Morielli A. D., Peralta E. G. The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell. 1998 Jun 12;93(6):1077–1085. doi: 10.1016/s0092-8674(00)81212-x. [DOI] [PubMed] [Google Scholar]
  8. Chant J., Mischke M., Mitchell E., Herskowitz I., Pringle J. R. Role of Bud3p in producing the axial budding pattern of yeast. J Cell Biol. 1995 May;129(3):767–778. doi: 10.1083/jcb.129.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Toledo M., Colombo K., Nagase T., Ohara O., Fort P., Blangy A. The yeast exchange assay, a new complementary method to screen for Dbl-like protein specificity: identification of a novel RhoA exchange factor. FEBS Lett. 2000 Sep 1;480(2-3):287–292. doi: 10.1016/s0014-5793(00)01953-0. [DOI] [PubMed] [Google Scholar]
  10. Elion E. A., Trueheart J., Fink G. R. Fus2 localizes near the site of cell fusion and is required for both cell fusion and nuclear alignment during zygote formation. J Cell Biol. 1995 Sep;130(6):1283–1296. doi: 10.1083/jcb.130.6.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glaven J. A., Whitehead I. P., Nomanbhoy T., Kay R., Cerione R. A. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J Biol Chem. 1996 Nov 1;271(44):27374–27381. doi: 10.1074/jbc.271.44.27374. [DOI] [PubMed] [Google Scholar]
  12. Gsell S., Eschenhagen T., Kaspareit G., Nose M., Scholz H., Behrens O., Wieland T. Apparent up-regulation of stimulatory G-protein alpha subunits in the pregnant human myometrium is mimicked by elevated smoothelin expression. FASEB J. 2000 Jan;14(1):17–26. doi: 10.1096/fasebj.14.1.17. [DOI] [PubMed] [Google Scholar]
  13. Hart M. J., Eva A., Zangrilli D., Aaronson S. A., Evans T., Cerione R. A., Zheng Y. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem. 1994 Jan 7;269(1):62–65. [PubMed] [Google Scholar]
  14. Hart M. J., Jiang X., Kozasa T., Roscoe W., Singer W. D., Gilman A. G., Sternweis P. C., Bollag G. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science. 1998 Jun 26;280(5372):2112–2114. doi: 10.1126/science.280.5372.2112. [DOI] [PubMed] [Google Scholar]
  15. Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
  16. Hines W. A., Thorburn A. Ras and rho are required for galphaq-induced hypertrophic gene expression in neonatal rat cardiac myocytes. J Mol Cell Cardiol. 1998 Mar;30(3):485–494. doi: 10.1006/jmcc.1997.0613. [DOI] [PubMed] [Google Scholar]
  17. Horii Y., Beeler J. F., Sakaguchi K., Tachibana M., Miki T. A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J. 1994 Oct 17;13(20):4776–4786. doi: 10.1002/j.1460-2075.1994.tb06803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoshijima M., Sah V. P., Wang Y., Chien K. R., Brown J. H. The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase. J Biol Chem. 1998 Mar 27;273(13):7725–7730. doi: 10.1074/jbc.273.13.7725. [DOI] [PubMed] [Google Scholar]
  19. Kjoller L., Hall A. Signaling to Rho GTPases. Exp Cell Res. 1999 Nov 25;253(1):166–179. doi: 10.1006/excr.1999.4674. [DOI] [PubMed] [Google Scholar]
  20. Lee J. E., Bokoch G., Liang B. T. A novel cardioprotective role of RhoA: new signaling mechanism for adenosine. FASEB J. 2001 Sep;15(11):1886–1894. doi: 10.1096/fj.01-0212com. [DOI] [PubMed] [Google Scholar]
  21. Mackay D. J., Hall A. Rho GTPases. J Biol Chem. 1998 Aug 14;273(33):20685–20688. doi: 10.1074/jbc.273.33.20685. [DOI] [PubMed] [Google Scholar]
  22. Mao J., Yuan H., Xie W., Wu D. Guanine nucleotide exchange factor GEF115 specifically mediates activation of Rho and serum response factor by the G protein alpha subunit Galpha13. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12973–12976. doi: 10.1073/pnas.95.22.12973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Michiels F., Habets G. G., Stam J. C., van der Kammen R. A., Collard J. G. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature. 1995 May 25;375(6529):338–340. doi: 10.1038/375338a0. [DOI] [PubMed] [Google Scholar]
  24. Mittmann C., Schüler C., Chung C. H., Höppner G., Nose M., Kehrl J. H., Wieland T. Evidence for a short form of RGS3 preferentially expressed in the human heart. Naunyn Schmiedebergs Arch Pharmacol. 2001 Apr;363(4):456–463. doi: 10.1007/s002100000376. [DOI] [PubMed] [Google Scholar]
  25. Morissette M. R., Sah V. P., Glembotski C. C., Brown J. H. The Rho effector, PKN, regulates ANF gene transcription in cardiomyocytes through a serum response element. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H1769–H1774. doi: 10.1152/ajpheart.2000.278.6.H1769. [DOI] [PubMed] [Google Scholar]
  26. Nishida K., Kaziro Y., Satoh T. Association of the proto-oncogene product dbl with G protein betagamma subunits. FEBS Lett. 1999 Oct 8;459(2):186–190. doi: 10.1016/s0014-5793(99)01244-2. [DOI] [PubMed] [Google Scholar]
  27. Ozaki K., Tanaka K., Imamura H., Hihara T., Kameyama T., Nonaka H., Hirano H., Matsuura Y., Takai Y. Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 1996 May 1;15(9):2196–2207. [PMC free article] [PubMed] [Google Scholar]
  28. Pearson W. R., Wood T., Zhang Z., Miller W. Comparison of DNA sequences with protein sequences. Genomics. 1997 Nov 15;46(1):24–36. doi: 10.1006/geno.1997.4995. [DOI] [PubMed] [Google Scholar]
  29. Prokopenko S. N., Brumby A., O'Keefe L., Prior L., He Y., Saint R., Bellen H. J. A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes Dev. 1999 Sep 1;13(17):2301–2314. doi: 10.1101/gad.13.17.2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ridley A. J. Rho family proteins and regulation of the actin cytoskeleton. Prog Mol Subcell Biol. 1999;22:1–22. doi: 10.1007/978-3-642-58591-3_1. [DOI] [PubMed] [Google Scholar]
  31. Russell Mark W., Raeker Maide O., Korytkowski Kristin A., Sonneman Kevin J. Identification, tissue expression and chromosomal localization of human Obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases. Gene. 2002 Jan 9;282(1-2):237–246. doi: 10.1016/s0378-1119(01)00795-8. [DOI] [PubMed] [Google Scholar]
  32. Rümenapp U., Asmus M., Schablowski H., Woznicki M., Han L., Jakobs K. H., Fahimi-Vahid M., Michalek C., Wieland T., Schmidt M. The M3 muscarinic acetylcholine receptor expressed in HEK-293 cells signals to phospholipase D via G12 but not Gq-type G proteins: regulators of G proteins as tools to dissect pertussis toxin-resistant G proteins in receptor-effector coupling. J Biol Chem. 2000 Oct 17;276(4):2474–2479. doi: 10.1074/jbc.M004957200. [DOI] [PubMed] [Google Scholar]
  33. Rümenapp U., Blomquist A., Schwörer G., Schablowski H., Psoma A., Jakobs K. H. Rho-specific binding and guanine nucleotide exchange catalysis by KIAA0380, a dbl family member. FEBS Lett. 1999 Oct 15;459(3):313–318. doi: 10.1016/s0014-5793(99)01270-3. [DOI] [PubMed] [Google Scholar]
  34. Sah V. P., Minamisawa S., Tam S. P., Wu T. H., Dorn G. W., 2nd, Ross J., Jr, Chien K. R., Brown J. H. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest. 1999 Jun;103(12):1627–1634. doi: 10.1172/JCI6842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Souchet Michel, Portales-Casamar Elodie, Mazurais David, Schmidt Susanne, Léger Isabelle, Javré Jean-Luc, Robert Philippe, Berrebi-Bertrand Isabelle, Bril Antoine, Gout Bernard. Human p63RhoGEF, a novel RhoA-specific guanine nucleotide exchange factor, is localized in cardiac sarcomere. J Cell Sci. 2002 Feb 1;115(Pt 3):629–640. doi: 10.1242/jcs.115.3.629. [DOI] [PubMed] [Google Scholar]
  36. Stam J. C., Collard J. G. The DH protein family, exchange factors for Rho-like GTPases. Prog Mol Subcell Biol. 1999;22:51–83. doi: 10.1007/978-3-642-58591-3_4. [DOI] [PubMed] [Google Scholar]
  37. Taylor J. M., Hildebrand J. D., Mack C. P., Cox M. E., Parsons J. T. Characterization of graf, the GTPase-activating protein for rho associated with focal adhesion kinase. Phosphorylation and possible regulation by mitogen-activated protein kinase. J Biol Chem. 1998 Apr 3;273(14):8063–8070. doi: 10.1074/jbc.273.14.8063. [DOI] [PubMed] [Google Scholar]
  38. Weil J., Eschenhagen T., Magnussen O., Mittmann C., Orthey E., Scholz H., Schäfer H., Scholtysik G. Reduction of myocardial myoglobin in bovine dilated cardiomyopathy. J Mol Cell Cardiol. 1997 Feb;29(2):743–751. doi: 10.1006/jmcc.1996.0318. [DOI] [PubMed] [Google Scholar]
  39. Wells C. D., Gutowski S., Bollag G., Sternweis P. C. Identification of potential mechanisms for regulation of p115 RhoGEF through analysis of endogenous and mutant forms of the exchange factor. J Biol Chem. 2001 May 30;276(31):28897–28905. doi: 10.1074/jbc.M102913200. [DOI] [PubMed] [Google Scholar]
  40. Whitehead I. P., Campbell S., Rossman K. L., Der C. J. Dbl family proteins. Biochim Biophys Acta. 1997 Feb 22;1332(1):F1–23. doi: 10.1016/s0304-419x(96)00040-6. [DOI] [PubMed] [Google Scholar]
  41. Young P., Ehler E., Gautel M. Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol. 2001 Jul 9;154(1):123–136. doi: 10.1083/jcb.200102110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zheng Y. Dbl family guanine nucleotide exchange factors. Trends Biochem Sci. 2001 Dec;26(12):724–732. doi: 10.1016/s0968-0004(01)01973-9. [DOI] [PubMed] [Google Scholar]
  43. Zheng Y., Fischer D. J., Santos M. F., Tigyi G., Pasteris N. G., Gorski J. L., Xu Y. The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J Biol Chem. 1996 Dec 27;271(52):33169–33172. doi: 10.1074/jbc.271.52.33169. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES