Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 1;367(Pt 1):49–56. doi: 10.1042/BJ20020232

Molecular cloning and biochemical characterization of rabbit factor XI.

Dipali Sinha 1, Mariola Marcinkiewicz 1, David Gailani 1, Peter N Walsh 1
PMCID: PMC1222859  PMID: 12084014

Abstract

Human factor XI, a plasma glycoprotein required for normal haemostasis, is a homodimer (160 kDa) formed by a single interchain disulphide bond linking the Cys-321 of each Apple 4 domain. Bovine, porcine and murine factor XI are also disulphide-linked homodimers. Rabbit factor XI, however, is an 80 kDa polypeptide on non-reducing SDS/PAGE, suggesting that rabbit factor XI exists and functions physiologically either as a monomer, as does prekallikrein, a structural homologue to factor XI, or as a non-covalent homodimer. We have investigated the structure and function of rabbit factor XI to gain insight into the relation between homodimeric structure and factor XI function. Characterization of the cDNA sequence of rabbit factor XI and its amino acid translation revealed that in the rabbit protein a His residue replaces the Cys-321 that forms the interchain disulphide linkage in human factor XI, explaining why rabbit factor XI is a monomer in non-reducing SDS/PAGE. On size-exclusion chromatography, however, purified plasma rabbit factor XI, like the human protein and unlike prekallikrein, eluted as a dimer, demonstrating that rabbit factor XI circulates as a non-covalent dimer. In functional assays rabbit factor XI and human factor XI behaved similarly. Both monomeric and dimeric factor XI were detected in extracts of cells expressing rabbit factor XI. We conclude that the failure of rabbit factor XI to form a covalent homodimer due to the replacement of Cys-321 with His does not impair its functional activity because it exists in plasma as a non-covalent homodimer and homodimerization is an intracellular process.

Full Text

The Full Text of this article is available as a PDF (211.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BELL W. N., ALTON H. G. A brain extract as a substitute for platelet suspensions in the thromboplastin generation test. Nature. 1954 Nov 6;174(4436):880–881. doi: 10.1038/174880a0. [DOI] [PubMed] [Google Scholar]
  2. Bouma B. N., Griffin J. H. Human blood coagulation factor XI. Purification, properties, and mechanism of activation by activated factor XII. J Biol Chem. 1977 Sep 25;252(18):6432–6437. [PubMed] [Google Scholar]
  3. Chung D. W., Fujikawa K., McMullen B. A., Davie E. W. Human plasma prekallikrein, a zymogen to a serine protease that contains four tandem repeats. Biochemistry. 1986 May 6;25(9):2410–2417. doi: 10.1021/bi00357a017. [DOI] [PubMed] [Google Scholar]
  4. Fujikawa K., Chung D. W., Hendrickson L. E., Davie E. W. Amino acid sequence of human factor XI, a blood coagulation factor with four tandem repeats that are highly homologous with plasma prekallikrein. Biochemistry. 1986 May 6;25(9):2417–2424. doi: 10.1021/bi00357a018. [DOI] [PubMed] [Google Scholar]
  5. Fujikawa K., Legaz M. E., Kato H., Davie E. W. The mechanism of activation of bovine factor IX (Christmas factor) by bovine factor XIa (activated plasma thromboplastin antecedent). Biochemistry. 1974 Oct 22;13(22):4508–4516. doi: 10.1021/bi00719a006. [DOI] [PubMed] [Google Scholar]
  6. Gailani D., Ho D., Sun M. F., Cheng Q., Walsh P. N. Model for a factor IX activation complex on blood platelets: dimeric conformation of factor XIa is essential. Blood. 2001 May 15;97(10):3117–3122. doi: 10.1182/blood.v97.10.3117. [DOI] [PubMed] [Google Scholar]
  7. Gailani D., Sun M. F., Sun Y. A comparison of murine and human factor XI. Blood. 1997 Aug 1;90(3):1055–1064. [PubMed] [Google Scholar]
  8. Imanaka Y., Lal K., Nishimura T., Bolton-Maggs P. H., Tuddenham E. G., McVey J. H. Identification of two novel mutations in non-Jewish factor XI deficiency. Br J Haematol. 1995 Aug;90(4):916–920. doi: 10.1111/j.1365-2141.1995.tb05215.x. [DOI] [PubMed] [Google Scholar]
  9. Mashiko H., Takahashi H. Factor XI: purification from porcine plasma by affinity chromatography and some properties of factor XI and activated factor XI. Biol Chem Hoppe Seyler. 1994 Jul;375(7):481–484. doi: 10.1515/bchm3.1994.375.7.481. [DOI] [PubMed] [Google Scholar]
  10. McMullen B. A., Fujikawa K., Davie E. W. Location of the disulfide bonds in human coagulation factor XI: the presence of tandem apple domains. Biochemistry. 1991 Feb 26;30(8):2056–2060. doi: 10.1021/bi00222a008. [DOI] [PubMed] [Google Scholar]
  11. McMullen B. A., Fujikawa K., Davie E. W. Location of the disulfide bonds in human plasma prekallikrein: the presence of four novel apple domains in the amino-terminal portion of the molecule. Biochemistry. 1991 Feb 26;30(8):2050–2056. doi: 10.1021/bi00222a007. [DOI] [PubMed] [Google Scholar]
  12. Meijers J. C., Davie E. W., Chung D. W. Expression of human blood coagulation factor XI: characterization of the defect in factor XI type III deficiency. Blood. 1992 Mar 15;79(6):1435–1440. [PubMed] [Google Scholar]
  13. Meijers J. C., Mulvihill E. R., Davie E. W., Chung D. W. Apple four in human blood coagulation factor XI mediates dimer formation. Biochemistry. 1992 May 19;31(19):4680–4684. doi: 10.1021/bi00134a021. [DOI] [PubMed] [Google Scholar]
  14. Mitchell M., Cutler J., Thompson S., Moore G., Jenkins Ap Rees E., Smith M., Savidge G., Alhaq A. Heterozygous factor XI deficiency associated with three novel mutations. Br J Haematol. 1999 Dec;107(4):763–765. doi: 10.1046/j.1365-2141.1999.01769.x. [DOI] [PubMed] [Google Scholar]
  15. Pugh R. E., McVey J. H., Tuddenham E. G., Hancock J. F. Six point mutations that cause factor XI deficiency. Blood. 1995 Mar 15;85(6):1509–1516. [PubMed] [Google Scholar]
  16. Ragni M. V., Sinha D., Seaman F., Lewis J. H., Spero J. A., Walsh P. N. Comparison of bleeding tendency, factor XI coagulant activity, and factor XI antigen in 25 factor XI-deficient kindreds. Blood. 1985 Mar;65(3):719–724. [PubMed] [Google Scholar]
  17. Saito H., Goldsmith G. H., Jr Plasma thromboplastin antecedent (PTA, factor XI): a specific and sensitive radioimmunoassay. Blood. 1977 Sep;50(3):377–385. [PubMed] [Google Scholar]
  18. Saito H., Ratnoff O. D., Bouma B. N., Seligsohn U. Failure to detect variant (CRM+) plasma thromboplastin antecedent (factor XI) molecules in hereditary plasma thromboplastin antecedent deficiency: a study of 125 patients of several ethnic backgrounds. J Lab Clin Med. 1985 Dec;106(6):718–722. [PubMed] [Google Scholar]
  19. Sun M. F., Zhao M., Gailani D. Identification of amino acids in the factor XI apple 3 domain required for activation of factor IX. J Biol Chem. 1999 Dec 17;274(51):36373–36378. doi: 10.1074/jbc.274.51.36373. [DOI] [PubMed] [Google Scholar]
  20. Sun Y., Gailani D. Identification of a factor IX binding site on the third apple domain of activated factor XI. J Biol Chem. 1996 Nov 15;271(46):29023–29028. doi: 10.1074/jbc.271.46.29023. [DOI] [PubMed] [Google Scholar]
  21. Thompson R. E., Mandle R., Jr, Kaplan A. P. Association of factor XI and high molecular weight kininogen in human plasma. J Clin Invest. 1977 Dec;60(6):1376–1380. doi: 10.1172/JCI108898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wagenvoord R., Hendrix H., Tran T., Hemker H. C. Development of a sensitive and rapid chromogenic factor IX assay for clinical use. Haemostasis. 1990;20(5):276–288. doi: 10.1159/000216139. [DOI] [PubMed] [Google Scholar]
  23. Walsh P. N. Roles of platelets and factor XI in the initiation of blood coagulation by thrombin. Thromb Haemost. 2001 Jul;86(1):75–82. [PubMed] [Google Scholar]
  24. Wiggins R. C., Cochrane C. G., Griffin J. H. Rabbit blood coagulation factor XI. Purification and properties. Thromb Res. 1979;15(3-4):475–486. doi: 10.1016/0049-3848(79)90153-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES