Abstract
Cathepsin B, a marker of the dedifferentiated chondrocyte phenotype, contributes to cartilage destruction in osteoarthritis and pathological proteolysis in rheumatoid arthritis and cancer. In search of possible means for neutralizing the action of this enzyme, we compared its expression, biosynthesis and distribution in articular chondrocytes and two lines of immortalized human chondrocytes. Native articular chondrocytes in primary culture and the polyclonal T/C-28a2 chondrocyte cell line were similar with respect to the number of endosomes and lysosomes, the distribution of three alternatively spliced cathepsin B mRNA forms, and the cathepsin B activity. In contrast, the clonal C-28/I2 cell line contained four times higher levels of intracellular cathepsin B activity, slightly higher numbers of endosomes and lysosomes, and uniform distribution of all three cathepsin B transcripts and thus resembled subcultured chondrocytes at an early stage of dedifferentiation. Transfection of T/C-28a2 chondrocytes with double-stranded cathepsin B mRNA resulted in inhibition of cathepsin B biosynthesis by up to 70% due to RNA interference, and single-stranded antisense DNAs of various sizes decreased cathepsin B biosynthesis by up to 78%. An antisense oligonucleotide designed to hybridize to the end of cathepsin B's exons 1 and the beginning of exon 3 was successful in specifically inhibiting the mRNA splice variant lacking exon 2. These results indicate that cathepsin B expression and activity may be targeted for gene silencing by RNA interference and antisense DNA in chondrocytes. Furthermore, the differential expression and distribution of cathepsin B and presence of the necessary molecular apparatus for gene silencing in the immortalized human chondrocyte cell lines indicate that they may serve as a useful model for studying the function of relevant enzymes in cartilage pathologies.
Full Text
The Full Text of this article is available as a PDF (329.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali S. Y. The presence of cathepsin B in cartilage. Biochem J. 1967 Jan;102(1):10C–11C. doi: 10.1042/bj1020010c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Attur M. G., Dave M., Cipolletta C., Kang P., Goldring M. B., Patel I. R., Abramson S. B., Amin A. R. Reversal of autocrine and paracrine effects of interleukin 1 (IL-1) in human arthritis by type II IL-1 decoy receptor. Potential for pharmacological intervention. J Biol Chem. 2000 Dec 22;275(51):40307–40315. doi: 10.1074/jbc.M002721200. [DOI] [PubMed] [Google Scholar]
- Baici A., Hörler D., Lang A., Merlin C., Kissling R. Cathepsin B in osteoarthritis: zonal variation of enzyme activity in human femoral head cartilage. Ann Rheum Dis. 1995 Apr;54(4):281–288. doi: 10.1136/ard.54.4.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baici A., Lang A. Cathepsin B secretion by rabbit articular chondrocytes: modulation by cycloheximide and glycosaminoglycans. Cell Tissue Res. 1990 Mar;259(3):567–573. doi: 10.1007/BF01740785. [DOI] [PubMed] [Google Scholar]
- Baici A., Lang A. Effect of interleukin-1 beta on the production of cathepsin B by rabbit articular chondrocytes. FEBS Lett. 1990 Dec 17;277(1-2):93–96. doi: 10.1016/0014-5793(90)80816-2. [DOI] [PubMed] [Google Scholar]
- Baici A., Lang A., Hörler D., Kissling R., Merlin C. Cathepsin B in osteoarthritis: cytochemical and histochemical analysis of human femoral head cartilage. Ann Rheum Dis. 1995 Apr;54(4):289–297. doi: 10.1136/ard.54.4.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baici A., Lang A., Hörler D., Knöpfel M. Cathepsin B as a marker of the dedifferentiated chondrocyte phenotype. Ann Rheum Dis. 1988 Aug;47(8):684–691. doi: 10.1136/ard.47.8.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bass B. L. Double-stranded RNA as a template for gene silencing. Cell. 2000 Apr 28;101(3):235–238. doi: 10.1016/s0092-8674(02)71133-1. [DOI] [PubMed] [Google Scholar]
- Bayliss M. T., Ali S. Y. Studies on cathepsin B in human articular cartilage. Biochem J. 1978 Apr 1;171(1):149–154. doi: 10.1042/bj1710149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benya P. D., Padilla S. R., Nimni M. E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978 Dec;15(4):1313–1321. doi: 10.1016/0092-8674(78)90056-9. [DOI] [PubMed] [Google Scholar]
- Berardi S., Lang A., Kostoulas G., Hörler D., Vilei E. M., Baici A. Alternative messenger RNA splicing and enzyme forms of cathepsin B in human osteoarthritic cartilage and cultured chondrocytes. Arthritis Rheum. 2001 Aug;44(8):1819–1831. doi: 10.1002/1529-0131(200108)44:8<1819::AID-ART319>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- Bosher J. M., Labouesse M. RNA interference: genetic wand and genetic watchdog. Nat Cell Biol. 2000 Feb;2(2):E31–E36. doi: 10.1038/35000102. [DOI] [PubMed] [Google Scholar]
- Carthew R. W. Gene silencing by double-stranded RNA. Curr Opin Cell Biol. 2001 Apr;13(2):244–248. doi: 10.1016/s0955-0674(00)00204-0. [DOI] [PubMed] [Google Scholar]
- Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May 24;411(6836):494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
- Foghsgaard L., Wissing D., Mauch D., Lademann U., Bastholm L., Boes M., Elling F., Leist M., Jättelä M. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol. 2001 May 28;153(5):999–1010. doi: 10.1083/jcb.153.5.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallaher W. R., DiSimone C., Buchmeier M. J. The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor. BMC Microbiol. 2001 Feb 9;1:1–1. doi: 10.1186/1471-2180-1-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiss G., Jin G., Guo J., Bumgarner R., Katze M. G., Sen G. C. A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J Biol Chem. 2001 Aug 10;276(32):30178–30182. doi: 10.1074/jbc.c100137200. [DOI] [PubMed] [Google Scholar]
- Goldring M. B., Birkhead J. R., Suen L. F., Yamin R., Mizuno S., Glowacki J., Arbiser J. L., Apperley J. F. Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest. 1994 Dec;94(6):2307–2316. doi: 10.1172/JCI117595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gong Q., Chan S. J., Bajkowski A. S., Steiner D. F., Frankfater A. Characterization of the cathepsin B gene and multiple mRNAs in human tissues: evidence for alternative splicing of cathepsin B pre-mRNA. DNA Cell Biol. 1993 May;12(4):299–309. doi: 10.1089/dna.1993.12.299. [DOI] [PubMed] [Google Scholar]
- Graf M., Baici A., Sträuli P. Histochemical localization of cathepsin B at the invasion front of the rabbit V2 carcinoma. Lab Invest. 1981 Dec;45(6):587–596. [PubMed] [Google Scholar]
- Johnson K., Vaingankar S., Chen Y., Moffa A., Goldring M. B., Sano K., Jin-Hua P., Sali A., Goding J., Terkeltaub R. Differential mechanisms of inorganic pyrophosphate production by plasma cell membrane glycoprotein-1 and B10 in chondrocytes. Arthritis Rheum. 1999 Sep;42(9):1986–1997. doi: 10.1002/1529-0131(199909)42:9<1986::AID-ANR26>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Kokenyesi R., Tan L., Robbins J. R., Goldring M. B. Proteoglycan production by immortalized human chondrocyte cell lines cultured under conditions that promote expression of the differentiated phenotype. Arch Biochem Biophys. 2000 Nov 1;383(1):79–90. doi: 10.1006/abbi.2000.2044. [DOI] [PubMed] [Google Scholar]
- Kostoulas G., Lang A., Nagase H., Baici A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett. 1999 Jul 23;455(3):286–290. doi: 10.1016/s0014-5793(99)00897-2. [DOI] [PubMed] [Google Scholar]
- Kostoulas G., Lang A., Trueb B., Baici A. Differential expression of mRNAs for endopeptidases in phenotypically modulated ('dedifferentiated') human articular chondrocytes. FEBS Lett. 1997 Aug 4;412(3):453–455. doi: 10.1016/s0014-5793(97)00825-9. [DOI] [PubMed] [Google Scholar]
- Krueger S., Haeckel C., Buehling F., Roessner A. Inhibitory effects of antisense cathepsin B cDNA transfection on invasion and motility in a human osteosarcoma cell line. Cancer Res. 1999 Dec 1;59(23):6010–6014. [PubMed] [Google Scholar]
- Kumar M., Carmichael G. G. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev. 1998 Dec;62(4):1415–1434. doi: 10.1128/mmbr.62.4.1415-1434.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang A., Hörler D., Baici A. The relative importance of cysteine peptidases in osteoarthritis. J Rheumatol. 2000 Aug;27(8):1970–1979. [PubMed] [Google Scholar]
- Loeser R. F., Sadiev S., Tan L., Goldring M. B. Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for alpha1beta1 and alpha2beta1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthritis Cartilage. 2000 Mar;8(2):96–105. doi: 10.1053/joca.1999.0277. [DOI] [PubMed] [Google Scholar]
- Martel-Pelletier J., Cloutier J. M., Pelletier J. P. Cathepsin B and cysteine protease inhibitors in human osteoarthritis. J Orthop Res. 1990 May;8(3):336–344. doi: 10.1002/jor.1100080305. [DOI] [PubMed] [Google Scholar]
- Mason R. W., Wilcox D., Wikstrom P., Shaw E. N. The identification of active forms of cysteine proteinases in Kirsten-virus-transformed mouse fibroblasts by use of a specific radiolabelled inhibitor. Biochem J. 1989 Jan 1;257(1):125–129. doi: 10.1042/bj2570125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
- Mehraban F., Tindal M. H., Proffitt M. M., Moskowitz R. W. Temporal pattern of cysteine endopeptidase (cathepsin B) expression in cartilage and synovium from rabbit knees with experimental osteoarthritis: gene expression in chondrocytes in response to interleukin-1 and matrix depletion. Ann Rheum Dis. 1997 Feb;56(2):108–115. doi: 10.1136/ard.56.2.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohanam S., Jasti S. L., Kondraganti S. R., Chandrasekar N., Lakka S. S., Kin Y., Fuller G. N., Yung A. W., Kyritsis A. P., Dinh D. H. Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene. 2001 Jun 21;20(28):3665–3673. doi: 10.1038/sj.onc.1204480. [DOI] [PubMed] [Google Scholar]
- Nuttall M. E., Nadeau D. P., Fisher P. W., Wang F., Keller P. M., DeWolf W. E., Jr, Goldring M. B., Badger A. M., Lee D., Levy M. A. Inhibition of caspase-3-like activity prevents apoptosis while retaining functionality of human chondrocytes in vitro. J Orthop Res. 2000 May;18(3):356–363. doi: 10.1002/jor.1100180306. [DOI] [PubMed] [Google Scholar]
- Robbins J. R., Thomas B., Tan L., Choy B., Arbiser J. L., Berenbaum F., Goldring M. B. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1beta. Arthritis Rheum. 2000 Oct;43(10):2189–2201. doi: 10.1002/1529-0131(200010)43:10<2189::AID-ANR6>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Stark G. R., Kerr I. M., Williams B. R., Silverman R. H., Schreiber R. D. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–264. doi: 10.1146/annurev.biochem.67.1.227. [DOI] [PubMed] [Google Scholar]
- Szpaderska A. M., Frankfater A. An intracellular form of cathepsin B contributes to invasiveness in cancer. Cancer Res. 2001 Apr 15;61(8):3493–3500. [PubMed] [Google Scholar]
- Ui-Tei K., Zenno S., Miyata Y., Saigo K. Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett. 2000 Aug 18;479(3):79–82. doi: 10.1016/s0014-5793(00)01883-4. [DOI] [PubMed] [Google Scholar]
- Wargelius A., Ellingsen S., Fjose A. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun. 1999 Sep 16;263(1):156–161. doi: 10.1006/bbrc.1999.1343. [DOI] [PubMed] [Google Scholar]
- Wianny F., Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. 2000 Feb;2(2):70–75. doi: 10.1038/35000016. [DOI] [PubMed] [Google Scholar]
- Zamore P. D. RNA interference: listening to the sound of silence. Nat Struct Biol. 2001 Sep;8(9):746–750. doi: 10.1038/nsb0901-746. [DOI] [PubMed] [Google Scholar]
- Zamore P. D., Tuschl T., Sharp P. A., Bartel D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000 Mar 31;101(1):25–33. doi: 10.1016/S0092-8674(00)80620-0. [DOI] [PubMed] [Google Scholar]
- Zwicky R., Baici A. Cytoskeletal architecture and cathepsin B trafficking in human articular chondrocytes. Histochem Cell Biol. 2000 Nov;114(5):363–372. doi: 10.1007/s004180000199. [DOI] [PubMed] [Google Scholar]