Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 1;367(Pt 1):113–120. doi: 10.1042/BJ20020675

Determinants of adenophostin A binding to inositol trisphosphate receptors.

Stephen A Morris 1, Edmund P Nerou 1, Andrew M Riley 1, Barry V L Potter 1, Colin W Taylor 1
PMCID: PMC1222864  PMID: 12088506

Abstract

Inositol 1,4,5-trisphosphate (IP(3)) receptors from cerebellum and recombinant type 1 IP(3) receptors expressed in Sf9 cells had indistinguishable affinities for IP(3) ( K (d)=6.40+/-0.48 nM) and adenophostin A ( K (d)=0.89+/-0.05 nM). In cytosol-like medium, each of the three mammalian IP(3) receptor subtypes when expressed in Sf9 cells bound adenophostin A with greater affinity than IP(3). It has been suggested that adenophostin A binds with high affinity only in the presence of ATP, but we found that adenophostin A similarly displaced [(3)H]IP(3) from type 1 IP(3) receptors whatever the ATP concentration. N-terminal fragments of the type 1 receptor were expressed with and without the S1 splice site; its removal had no effect on [(3)H]IP(3) binding to the 1-604 protein, but abolished binding to the 224-604 protein. The 1-604 fragment and full-length receptor bound adenophostin A with the same affinity, but the fragment had 3-fold greater affinity for IP(3), suggesting that C-terminal residues selectively inhibit IP(3) binding. The 224-604S1(+) fragment bound IP(3) and adenophostin A with increased affinity, but as with the 1-604 fragment it bound adenophostin A with only 2-fold greater affinity than IP(3). High-affinity binding of adenophostin A may be partially determined by its 2'-phosphate interacting more effectively than the 1-phosphate of IP(3) with residues within the IP(3)-binding core. This may account for the 2-fold greater affinity of adenophostin A relative to IP(3) for the minimal IP(3)-binding domain. In addition we suggest that C-terminal residues, which impede access of IP(3), may selectively interact with adenophostin A to allow it unhindered access to the IP(3)-binding domain.

Full Text

The Full Text of this article is available as a PDF (207.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins C. E., Wissing F., Potter B. V., Taylor C. W. Rapid activation and partial inactivation of inositol trisphosphate receptors by adenophostin A. Biochem J. 2000 Dec 15;352(Pt 3):929–933. [PMC free article] [PubMed] [Google Scholar]
  2. Beecroft M. D., Marchant J. S., Riley A. M., Van Straten N. C., Van der Marel G. A., Van Boom J. H., Potter B. V., Taylor C. W. Acyclophostin: a ribose-modified analog of adenophostin A with high affinity for inositol 1,4,5-trisphosphate receptors and pH-dependent efficacy. Mol Pharmacol. 1999 Jan;55(1):109–117. doi: 10.1124/mol.55.1.109. [DOI] [PubMed] [Google Scholar]
  3. Bezprozvanny I., Ehrlich B. E. ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron. 1993 Jun;10(6):1175–1184. doi: 10.1016/0896-6273(93)90065-y. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Broad L. M., Armstrong D. L., Putney J. W., Jr Role of the inositol 1,4,5-trisphosphate receptor in Ca(2+) feedback inhibition of calcium release-activated calcium current (I(crac)). J Biol Chem. 1999 Nov 12;274(46):32881–32888. doi: 10.1074/jbc.274.46.32881. [DOI] [PubMed] [Google Scholar]
  6. Correa V., Riley A. M., Shuto S., Horne G., Nerou E. P., Marwood R. D., Potter B. V., Taylor C. W. Structural determinants of adenophostin A activity at inositol trisphosphate receptors. Mol Pharmacol. 2001 May;59(5):1206–1215. doi: 10.1124/mol.59.5.1206. [DOI] [PubMed] [Google Scholar]
  7. Felemez M., Marwood R. D., Potter B. V., Spiess B. Inframolecular studies of the protonation of adenophostin A: comparison with 1-D-myo-inositol 1,4,5-trisphosphate. Biochem Biophys Res Commun. 1999 Dec 20;266(2):334–340. doi: 10.1006/bbrc.1999.1832. [DOI] [PubMed] [Google Scholar]
  8. Glouchankova L., Krishna U. M., Potter B. V., Falck J. R., Bezprozvanny I. Association of the inositol (1,4,5)-trisphosphate receptor ligand binding site with phosphatidylinositol (4,5)-bisphosphate and adenophostin A. Mol Cell Biol Res Commun. 2000 Mar;3(3):153–158. doi: 10.1006/mcbr.2000.0208. [DOI] [PubMed] [Google Scholar]
  9. Hirota J., Michikawa T., Miyawaki A., Takahashi M., Tanzawa K., Okura I., Furuichi T., Mikoshiba K. Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett. 1995 Jul 17;368(2):248–252. doi: 10.1016/0014-5793(95)00659-w. [DOI] [PubMed] [Google Scholar]
  10. Hotoda H., Murayama K., Miyamoto S., Iwata Y., Takahashi M., Kawase Y., Tanzawa K., Kaneko M. Molecular recognition of adenophostin, a very potent Ca2+ inducer, at the D-myo-inositol 1,4,5-trisphosphate receptor. Biochemistry. 1999 Jul 20;38(29):9234–9241. doi: 10.1021/bi990114r. [DOI] [PubMed] [Google Scholar]
  11. Joseph S. K., Pierson S., Samanta S. Trypsin digestion of the inositol trisphosphate receptor: implications for the conformation and domain organization of the protein. Biochem J. 1995 May 1;307(Pt 3):859–865. doi: 10.1042/bj3070859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maes K., Missiaen L., Parys J. B., Sienaert I., Bultynck G., Zizi M., De Smet P., Casteels R., De Smedt H. Adenine-nucleotide binding sites on the inositol 1,4,5-trisphosphate receptor bind caffeine, but not adenophostin A or cyclic ADP-ribose. Cell Calcium. 1999 Feb;25(2):143–152. doi: 10.1054/ceca.1998.0011. [DOI] [PubMed] [Google Scholar]
  13. Mak D. O., McBride S., Foskett J. K. ATP-dependent adenophostin activation of inositol 1,4,5-trisphosphate receptor channel gating: kinetic implications for the durations of calcium puffs in cells. J Gen Physiol. 2001 Apr;117(4):299–314. doi: 10.1085/jgp.117.4.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marchant J. S., Beecroft M. D., Riley A. M., Jenkins D. J., Marwood R. D., Taylor C. W., Potter B. V. Disaccharide polyphosphates based upon adenophostin A activate hepatic D-myo-inositol 1,4,5-trisphosphate receptors. Biochemistry. 1997 Oct 21;36(42):12780–12790. doi: 10.1021/bi971397v. [DOI] [PubMed] [Google Scholar]
  15. Mignery G. A., Südhof T. C., Takei K., De Camilli P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature. 1989 Nov 9;342(6246):192–195. doi: 10.1038/342192a0. [DOI] [PubMed] [Google Scholar]
  16. Mignery G. A., Südhof T. C. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J. 1990 Dec;9(12):3893–3898. doi: 10.1002/j.1460-2075.1990.tb07609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Missiaen L., Parys J. B., Sienaert I., Maes K., Kunzelmann K., Takahashi M., Tanzawa K., De Smedt H. Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem. 1998 Apr 10;273(15):8983–8986. doi: 10.1074/jbc.273.15.8983. [DOI] [PubMed] [Google Scholar]
  18. Nakade S., Maeda N., Mikoshiba K. Involvement of the C-terminus of the inositol 1,4,5-trisphosphate receptor in Ca2+ release analysed using region-specific monoclonal antibodies. Biochem J. 1991 Jul 1;277(Pt 1):125–131. doi: 10.1042/bj2770125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nerou E. P., Riley A. M., Potter B. V., Taylor C. W. Selective recognition of inositol phosphates by subtypes of the inositol trisphosphate receptor. Biochem J. 2001 Apr 1;355(Pt 1):59–69. doi: 10.1042/0264-6021:3550059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Newton C. L., Mignery G. A., Südhof T. C. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. [PubMed] [Google Scholar]
  21. Nunn D. L., Taylor C. W. Liver inositol, 1,4,5-trisphosphate-binding sites are the Ca2(+)-mobilizing receptors. Biochem J. 1990 Aug 15;270(1):227–232. doi: 10.1042/bj2700227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Parekh Anant B., Riley Andrew M., Potter Barry V. L. Adenophostin A and ribophostin, but not inositol 1,4,5-trisphosphate or manno-adenophostin, activate the Ca2+ release-activated Ca2+ current, I(CRAC), in weak intracellular Ca2+ buffer. Biochem J. 2002 Jan 1;361(Pt 1):133–141. doi: 10.1042/0264-6021:3610133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Patel S., Joseph S. K., Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999 Mar;25(3):247–264. doi: 10.1054/ceca.1999.0021. [DOI] [PubMed] [Google Scholar]
  24. Patel S., Morris S. A., Adkins C. E., O'Beirne G., Taylor C. W. Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11627–11632. doi: 10.1073/pnas.94.21.11627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ramos-Franco J., Caenepeel S., Fill M., Mignery G. Single channel function of recombinant type-1 inositol 1,4,5-trisphosphate receptor ligand binding domain splice variants. Biophys J. 1998 Dec;75(6):2783–2793. doi: 10.1016/S0006-3495(98)77721-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Richardson A., Taylor C. W. Effects of Ca2+ chelators on purified inositol 1,4,5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization. J Biol Chem. 1993 Jun 5;268(16):11528–11533. [PubMed] [Google Scholar]
  27. Takahashi M., Tanzawa K., Takahashi S. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994 Jan 7;269(1):369–372. [PubMed] [Google Scholar]
  28. Takahashi S., Kinoshita T., Takahashi M. Adenophostins A and B: potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Structure elucidation. J Antibiot (Tokyo) 1994 Jan;47(1):95–100. doi: 10.7164/antibiotics.47.95. [DOI] [PubMed] [Google Scholar]
  29. Taylor C. W., Genazzani A. A., Morris S. A. Expression of inositol trisphosphate receptors. Cell Calcium. 1999 Dec;26(6):237–251. doi: 10.1054/ceca.1999.0090. [DOI] [PubMed] [Google Scholar]
  30. Vanlingen S., Sipma H., De Smet P., Callewaert G., Missiaen L., De Smedt H., Parys J. B. Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms. Biochem J. 2000 Mar 1;346(Pt 2):275–280. [PMC free article] [PubMed] [Google Scholar]
  31. Wojcikiewicz R. J., Luo S. G. Differences among type I, II, and III inositol-1,4,5-trisphosphate receptors in ligand-binding affinity influence the sensitivity of calcium stores to inositol-1,4,5-trisphosphate. Mol Pharmacol. 1998 Apr;53(4):656–662. doi: 10.1124/mol.53.4.656. [DOI] [PubMed] [Google Scholar]
  32. Yoshikawa F., Iwasaki H., Michikawa T., Furuichi T., Mikoshiba K. Cooperative formation of the ligand-binding site of the inositol 1,4, 5-trisphosphate receptor by two separable domains. J Biol Chem. 1999 Jan 1;274(1):328–334. doi: 10.1074/jbc.274.1.328. [DOI] [PubMed] [Google Scholar]
  33. Yoshikawa F., Iwasaki H., Michikawa T., Furuichi T., Mikoshiba K. Trypsinized cerebellar inositol 1,4,5-trisphosphate receptor. Structural and functional coupling of cleaved ligand binding and channel domains. J Biol Chem. 1999 Jan 1;274(1):316–327. doi: 10.1074/jbc.274.1.316. [DOI] [PubMed] [Google Scholar]
  34. Yoshikawa F., Morita M., Monkawa T., Michikawa T., Furuichi T., Mikoshiba K. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1996 Jul 26;271(30):18277–18284. doi: 10.1074/jbc.271.30.18277. [DOI] [PubMed] [Google Scholar]
  35. Yoshikawa F., Uchiyama T., Iwasaki H., Tomomori-Satoh C., Tanaka T., Furuichi T., Mikoshiba K. High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli. Biochem Biophys Res Commun. 1999 Apr 21;257(3):792–797. doi: 10.1006/bbrc.1999.0498. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES