Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors from cerebellum and recombinant type 1 IP(3) receptors expressed in Sf9 cells had indistinguishable affinities for IP(3) ( K (d)=6.40+/-0.48 nM) and adenophostin A ( K (d)=0.89+/-0.05 nM). In cytosol-like medium, each of the three mammalian IP(3) receptor subtypes when expressed in Sf9 cells bound adenophostin A with greater affinity than IP(3). It has been suggested that adenophostin A binds with high affinity only in the presence of ATP, but we found that adenophostin A similarly displaced [(3)H]IP(3) from type 1 IP(3) receptors whatever the ATP concentration. N-terminal fragments of the type 1 receptor were expressed with and without the S1 splice site; its removal had no effect on [(3)H]IP(3) binding to the 1-604 protein, but abolished binding to the 224-604 protein. The 1-604 fragment and full-length receptor bound adenophostin A with the same affinity, but the fragment had 3-fold greater affinity for IP(3), suggesting that C-terminal residues selectively inhibit IP(3) binding. The 224-604S1(+) fragment bound IP(3) and adenophostin A with increased affinity, but as with the 1-604 fragment it bound adenophostin A with only 2-fold greater affinity than IP(3). High-affinity binding of adenophostin A may be partially determined by its 2'-phosphate interacting more effectively than the 1-phosphate of IP(3) with residues within the IP(3)-binding core. This may account for the 2-fold greater affinity of adenophostin A relative to IP(3) for the minimal IP(3)-binding domain. In addition we suggest that C-terminal residues, which impede access of IP(3), may selectively interact with adenophostin A to allow it unhindered access to the IP(3)-binding domain.
Full Text
The Full Text of this article is available as a PDF (207.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adkins C. E., Wissing F., Potter B. V., Taylor C. W. Rapid activation and partial inactivation of inositol trisphosphate receptors by adenophostin A. Biochem J. 2000 Dec 15;352(Pt 3):929–933. [PMC free article] [PubMed] [Google Scholar]
- Beecroft M. D., Marchant J. S., Riley A. M., Van Straten N. C., Van der Marel G. A., Van Boom J. H., Potter B. V., Taylor C. W. Acyclophostin: a ribose-modified analog of adenophostin A with high affinity for inositol 1,4,5-trisphosphate receptors and pH-dependent efficacy. Mol Pharmacol. 1999 Jan;55(1):109–117. doi: 10.1124/mol.55.1.109. [DOI] [PubMed] [Google Scholar]
- Bezprozvanny I., Ehrlich B. E. ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron. 1993 Jun;10(6):1175–1184. doi: 10.1016/0896-6273(93)90065-y. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Broad L. M., Armstrong D. L., Putney J. W., Jr Role of the inositol 1,4,5-trisphosphate receptor in Ca(2+) feedback inhibition of calcium release-activated calcium current (I(crac)). J Biol Chem. 1999 Nov 12;274(46):32881–32888. doi: 10.1074/jbc.274.46.32881. [DOI] [PubMed] [Google Scholar]
- Correa V., Riley A. M., Shuto S., Horne G., Nerou E. P., Marwood R. D., Potter B. V., Taylor C. W. Structural determinants of adenophostin A activity at inositol trisphosphate receptors. Mol Pharmacol. 2001 May;59(5):1206–1215. doi: 10.1124/mol.59.5.1206. [DOI] [PubMed] [Google Scholar]
- Felemez M., Marwood R. D., Potter B. V., Spiess B. Inframolecular studies of the protonation of adenophostin A: comparison with 1-D-myo-inositol 1,4,5-trisphosphate. Biochem Biophys Res Commun. 1999 Dec 20;266(2):334–340. doi: 10.1006/bbrc.1999.1832. [DOI] [PubMed] [Google Scholar]
- Glouchankova L., Krishna U. M., Potter B. V., Falck J. R., Bezprozvanny I. Association of the inositol (1,4,5)-trisphosphate receptor ligand binding site with phosphatidylinositol (4,5)-bisphosphate and adenophostin A. Mol Cell Biol Res Commun. 2000 Mar;3(3):153–158. doi: 10.1006/mcbr.2000.0208. [DOI] [PubMed] [Google Scholar]
- Hirota J., Michikawa T., Miyawaki A., Takahashi M., Tanzawa K., Okura I., Furuichi T., Mikoshiba K. Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett. 1995 Jul 17;368(2):248–252. doi: 10.1016/0014-5793(95)00659-w. [DOI] [PubMed] [Google Scholar]
- Hotoda H., Murayama K., Miyamoto S., Iwata Y., Takahashi M., Kawase Y., Tanzawa K., Kaneko M. Molecular recognition of adenophostin, a very potent Ca2+ inducer, at the D-myo-inositol 1,4,5-trisphosphate receptor. Biochemistry. 1999 Jul 20;38(29):9234–9241. doi: 10.1021/bi990114r. [DOI] [PubMed] [Google Scholar]
- Joseph S. K., Pierson S., Samanta S. Trypsin digestion of the inositol trisphosphate receptor: implications for the conformation and domain organization of the protein. Biochem J. 1995 May 1;307(Pt 3):859–865. doi: 10.1042/bj3070859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maes K., Missiaen L., Parys J. B., Sienaert I., Bultynck G., Zizi M., De Smet P., Casteels R., De Smedt H. Adenine-nucleotide binding sites on the inositol 1,4,5-trisphosphate receptor bind caffeine, but not adenophostin A or cyclic ADP-ribose. Cell Calcium. 1999 Feb;25(2):143–152. doi: 10.1054/ceca.1998.0011. [DOI] [PubMed] [Google Scholar]
- Mak D. O., McBride S., Foskett J. K. ATP-dependent adenophostin activation of inositol 1,4,5-trisphosphate receptor channel gating: kinetic implications for the durations of calcium puffs in cells. J Gen Physiol. 2001 Apr;117(4):299–314. doi: 10.1085/jgp.117.4.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchant J. S., Beecroft M. D., Riley A. M., Jenkins D. J., Marwood R. D., Taylor C. W., Potter B. V. Disaccharide polyphosphates based upon adenophostin A activate hepatic D-myo-inositol 1,4,5-trisphosphate receptors. Biochemistry. 1997 Oct 21;36(42):12780–12790. doi: 10.1021/bi971397v. [DOI] [PubMed] [Google Scholar]
- Mignery G. A., Südhof T. C., Takei K., De Camilli P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature. 1989 Nov 9;342(6246):192–195. doi: 10.1038/342192a0. [DOI] [PubMed] [Google Scholar]
- Mignery G. A., Südhof T. C. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J. 1990 Dec;9(12):3893–3898. doi: 10.1002/j.1460-2075.1990.tb07609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Missiaen L., Parys J. B., Sienaert I., Maes K., Kunzelmann K., Takahashi M., Tanzawa K., De Smedt H. Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem. 1998 Apr 10;273(15):8983–8986. doi: 10.1074/jbc.273.15.8983. [DOI] [PubMed] [Google Scholar]
- Nakade S., Maeda N., Mikoshiba K. Involvement of the C-terminus of the inositol 1,4,5-trisphosphate receptor in Ca2+ release analysed using region-specific monoclonal antibodies. Biochem J. 1991 Jul 1;277(Pt 1):125–131. doi: 10.1042/bj2770125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nerou E. P., Riley A. M., Potter B. V., Taylor C. W. Selective recognition of inositol phosphates by subtypes of the inositol trisphosphate receptor. Biochem J. 2001 Apr 1;355(Pt 1):59–69. doi: 10.1042/0264-6021:3550059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton C. L., Mignery G. A., Südhof T. C. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. [PubMed] [Google Scholar]
- Nunn D. L., Taylor C. W. Liver inositol, 1,4,5-trisphosphate-binding sites are the Ca2(+)-mobilizing receptors. Biochem J. 1990 Aug 15;270(1):227–232. doi: 10.1042/bj2700227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parekh Anant B., Riley Andrew M., Potter Barry V. L. Adenophostin A and ribophostin, but not inositol 1,4,5-trisphosphate or manno-adenophostin, activate the Ca2+ release-activated Ca2+ current, I(CRAC), in weak intracellular Ca2+ buffer. Biochem J. 2002 Jan 1;361(Pt 1):133–141. doi: 10.1042/0264-6021:3610133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel S., Joseph S. K., Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999 Mar;25(3):247–264. doi: 10.1054/ceca.1999.0021. [DOI] [PubMed] [Google Scholar]
- Patel S., Morris S. A., Adkins C. E., O'Beirne G., Taylor C. W. Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11627–11632. doi: 10.1073/pnas.94.21.11627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramos-Franco J., Caenepeel S., Fill M., Mignery G. Single channel function of recombinant type-1 inositol 1,4,5-trisphosphate receptor ligand binding domain splice variants. Biophys J. 1998 Dec;75(6):2783–2793. doi: 10.1016/S0006-3495(98)77721-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson A., Taylor C. W. Effects of Ca2+ chelators on purified inositol 1,4,5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization. J Biol Chem. 1993 Jun 5;268(16):11528–11533. [PubMed] [Google Scholar]
- Takahashi M., Tanzawa K., Takahashi S. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994 Jan 7;269(1):369–372. [PubMed] [Google Scholar]
- Takahashi S., Kinoshita T., Takahashi M. Adenophostins A and B: potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Structure elucidation. J Antibiot (Tokyo) 1994 Jan;47(1):95–100. doi: 10.7164/antibiotics.47.95. [DOI] [PubMed] [Google Scholar]
- Taylor C. W., Genazzani A. A., Morris S. A. Expression of inositol trisphosphate receptors. Cell Calcium. 1999 Dec;26(6):237–251. doi: 10.1054/ceca.1999.0090. [DOI] [PubMed] [Google Scholar]
- Vanlingen S., Sipma H., De Smet P., Callewaert G., Missiaen L., De Smedt H., Parys J. B. Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms. Biochem J. 2000 Mar 1;346(Pt 2):275–280. [PMC free article] [PubMed] [Google Scholar]
- Wojcikiewicz R. J., Luo S. G. Differences among type I, II, and III inositol-1,4,5-trisphosphate receptors in ligand-binding affinity influence the sensitivity of calcium stores to inositol-1,4,5-trisphosphate. Mol Pharmacol. 1998 Apr;53(4):656–662. doi: 10.1124/mol.53.4.656. [DOI] [PubMed] [Google Scholar]
- Yoshikawa F., Iwasaki H., Michikawa T., Furuichi T., Mikoshiba K. Cooperative formation of the ligand-binding site of the inositol 1,4, 5-trisphosphate receptor by two separable domains. J Biol Chem. 1999 Jan 1;274(1):328–334. doi: 10.1074/jbc.274.1.328. [DOI] [PubMed] [Google Scholar]
- Yoshikawa F., Iwasaki H., Michikawa T., Furuichi T., Mikoshiba K. Trypsinized cerebellar inositol 1,4,5-trisphosphate receptor. Structural and functional coupling of cleaved ligand binding and channel domains. J Biol Chem. 1999 Jan 1;274(1):316–327. doi: 10.1074/jbc.274.1.316. [DOI] [PubMed] [Google Scholar]
- Yoshikawa F., Morita M., Monkawa T., Michikawa T., Furuichi T., Mikoshiba K. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1996 Jul 26;271(30):18277–18284. doi: 10.1074/jbc.271.30.18277. [DOI] [PubMed] [Google Scholar]
- Yoshikawa F., Uchiyama T., Iwasaki H., Tomomori-Satoh C., Tanaka T., Furuichi T., Mikoshiba K. High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli. Biochem Biophys Res Commun. 1999 Apr 21;257(3):792–797. doi: 10.1006/bbrc.1999.0498. [DOI] [PubMed] [Google Scholar]