Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 1;367(Pt 1):229–238. doi: 10.1042/BJ20020822

The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF).

Véronique Hospital 1, Eiichiro Nishi 1, Michael Klagsbrun 1, Paul Cohen 1, Nabil G Seidah 1, Annik Prat 1
PMCID: PMC1222870  PMID: 12095415

Abstract

Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met(49). Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc-HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca(2+), via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase.

Full Text

The Full Text of this article is available as a PDF (357.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adames N., Blundell K., Ashby M. N., Boone C. Role of yeast insulin-degrading enzyme homologs in propheromone processing and bud site selection. Science. 1995 Oct 20;270(5235):464–467. doi: 10.1126/science.270.5235.464. [DOI] [PubMed] [Google Scholar]
  2. Affholter J. A., Fried V. A., Roth R. A. Human insulin-degrading enzyme shares structural and functional homologies with E. coli protease III. Science. 1988 Dec 9;242(4884):1415–1418. doi: 10.1126/science.3059494. [DOI] [PubMed] [Google Scholar]
  3. Asakura Masanori, Kitakaze Masafumi, Takashima Seiji, Liao Yulin, Ishikura Fuminobu, Yoshinaka Tsuyoshi, Ohmoto Hiroshi, Node Koichi, Yoshino Kohichiro, Ishiguro Hiroshi. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002 Jan;8(1):35–40. doi: 10.1038/nm0102-35. [DOI] [PubMed] [Google Scholar]
  4. Baksh S., Michalak M. Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem. 1991 Nov 15;266(32):21458–21465. [PubMed] [Google Scholar]
  5. Baumeister H., Müller D., Rehbein M., Richter D. The rat insulin-degrading enzyme. Molecular cloning and characterization of tissue-specific transcripts. FEBS Lett. 1993 Feb 15;317(3):250–254. doi: 10.1016/0014-5793(93)81286-9. [DOI] [PubMed] [Google Scholar]
  6. Besner G. E., Whelton D., Crissman-Combs M. A., Steffen C. L., Kim G. Y., Brigstock D. R. Interaction of heparin-binding EGF-like growth factor (HB-EGF) with the epidermal growth factor receptor: modulation by heparin, heparinase, or synthetic heparin-binding HB-EGF fragments. Growth Factors. 1992;7(4):289–296. doi: 10.3109/08977199209046411. [DOI] [PubMed] [Google Scholar]
  7. Braun H. P., Schmitz U. K. Are the 'core' proteins of the mitochondrial bc1 complex evolutionary relics of a processing protease? Trends Biochem Sci. 1995 May;20(5):171–175. doi: 10.1016/s0968-0004(00)88999-9. [DOI] [PubMed] [Google Scholar]
  8. Chesneau V., Pierotti A. R., Barré N., Créminon C., Tougard C., Cohen P. Isolation and characterization of a dibasic selective metalloendopeptidase from rat testes that cleaves at the amino terminus of arginine residues. J Biol Chem. 1994 Jan 21;269(3):2056–2061. [PubMed] [Google Scholar]
  9. Chesneau V., Prat A., Segretain D., Hospital V., Dupaix A., Foulon T., Jégou B., Cohen P. NRD convertase: a putative processing endoprotease associated with the axoneme and the manchette in late spermatids. J Cell Sci. 1996 Nov;109(Pt 11):2737–2745. doi: 10.1242/jcs.109.11.2737. [DOI] [PubMed] [Google Scholar]
  10. Chow K. M., Csuhai E., Juliano M. A., St Pyrek J., Juliano L., Hersh L. B. Studies on the subsite specificity of rat nardilysin (N-arginine dibasic convertase). J Biol Chem. 2000 Jun 30;275(26):19545–19551. doi: 10.1074/jbc.M909020199. [DOI] [PubMed] [Google Scholar]
  11. Cool D. R., Normant E., Shen F., Chen H. C., Pannell L., Zhang Y., Loh Y. P. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell. 1997 Jan 10;88(1):73–83. doi: 10.1016/s0092-8674(00)81860-7. [DOI] [PubMed] [Google Scholar]
  12. Csuhai E., Chen G., Hersh L. B. Regulation of N-arginine dibasic convertase activity by amines: putative role of a novel acidic domain as an amine binding site. Biochemistry. 1998 Mar 17;37(11):3787–3794. doi: 10.1021/bi971969b. [DOI] [PubMed] [Google Scholar]
  13. Csuhai E., Safavi A., Hersh L. B. Purification and characterization of a secreted arginine-specific dibasic cleaving enzyme from EL-4 cells. Biochemistry. 1995 Sep 26;34(38):12411–12419. doi: 10.1021/bi00038a039. [DOI] [PubMed] [Google Scholar]
  14. Elenius K., Paul S., Allison G., Sun J., Klagsbrun M. Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J. 1997 Mar 17;16(6):1268–1278. doi: 10.1093/emboj/16.6.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fricker L. D. Carboxypeptidase E. Annu Rev Physiol. 1988;50:309–321. doi: 10.1146/annurev.ph.50.030188.001521. [DOI] [PubMed] [Google Scholar]
  16. Fujita A., Oka C., Arikawa Y., Katagai T., Tonouchi A., Kuhara S., Misumi Y. A yeast gene necessary for bud-site selection encodes a protein similar to insulin-degrading enzymes. Nature. 1994 Dec 8;372(6506):567–570. doi: 10.1038/372567a0. [DOI] [PubMed] [Google Scholar]
  17. Fumagalli P., Accarino M., Egeo A., Scartezzini P., Rappazzo G., Pizzuti A., Avvantaggiato V., Simeone A., Arrigo G., Zuffardi O. Human NRD convertase: a highly conserved metalloendopeptidase expressed at specific sites during development and in adult tissues. Genomics. 1998 Jan 15;47(2):238–245. doi: 10.1006/geno.1997.5078. [DOI] [PubMed] [Google Scholar]
  18. Giglione C., Serero A., Pierre M., Boisson B., Meinnel T. Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J. 2000 Nov 1;19(21):5916–5929. doi: 10.1093/emboj/19.21.5916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gluschankof P., Gomez S., Morel A., Cohen P. Enzymes that process somatostatin precursors. A novel endoprotease that cleaves before the arginine-lysine doublet is involved in somatostatin-28 convertase activity of rat brain cortex. J Biol Chem. 1987 Jul 15;262(20):9615–9620. [PubMed] [Google Scholar]
  20. Gluschankof P., Morel A., Gomez S., Nicolas P., Fahy C., Cohen P. Enzymes processing somatostatin precursors: an Arg-Lys esteropeptidase from the rat brain cortex converting somatostatin-28 into somatostatin-14. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6662–6666. doi: 10.1073/pnas.81.21.6662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goishi K., Higashiyama S., Klagsbrun M., Nakano N., Umata T., Ishikawa M., Mekada E., Taniguchi N. Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtacrine to paracrine growth factor activity. Mol Biol Cell. 1995 Aug;6(8):967–980. doi: 10.1091/mbc.6.8.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hakes D. J., Dixon J. E. New vectors for high level expression of recombinant proteins in bacteria. Anal Biochem. 1992 May 1;202(2):293–298. doi: 10.1016/0003-2697(92)90108-j. [DOI] [PubMed] [Google Scholar]
  23. Higashiyama S., Abraham J. A., Klagsbrun M. Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J Cell Biol. 1993 Aug;122(4):933–940. doi: 10.1083/jcb.122.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Higashiyama S., Abraham J. A., Miller J., Fiddes J. C., Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991 Feb 22;251(4996):936–939. doi: 10.1126/science.1840698. [DOI] [PubMed] [Google Scholar]
  25. Hooper N. M. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1–6. doi: 10.1016/0014-5793(94)01079-x. [DOI] [PubMed] [Google Scholar]
  26. Hospital V., Chesneau V., Balogh A., Joulie C., Seidah N. G., Cohen P., Prat A. N-arginine dibasic convertase (nardilysin) isoforms are soluble dibasic-specific metalloendopeptidases that localize in the cytoplasm and at the cell surface. Biochem J. 2000 Jul 15;349(Pt 2):587–597. doi: 10.1042/0264-6021:3490587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hospital V., Prat A., Joulie C., Chérif D., Day R., Cohen P. Human and rat testis express two mRNA species encoding variants of NRD convertase, a metalloendopeptidase of the insulinase family. Biochem J. 1997 Nov 1;327(Pt 3):773–779. doi: 10.1042/bj3270773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kan M., Wang F., Xu J., Crabb J. W., Hou J., McKeehan W. L. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science. 1993 Mar 26;259(5103):1918–1921. doi: 10.1126/science.8456318. [DOI] [PubMed] [Google Scholar]
  29. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene. 1999 Jul 8;234(2):187–208. doi: 10.1016/s0378-1119(99)00210-3. [DOI] [PubMed] [Google Scholar]
  31. Ma Z., Csuhai E., Chow K. M., Hersh L. B. Expression of the acidic stretch of nardilysin as a functional binding domain. Biochemistry. 2001 Aug 7;40(31):9447–9452. doi: 10.1021/bi010538x. [DOI] [PubMed] [Google Scholar]
  32. Nishi E., Prat A., Hospital V., Elenius K., Klagsbrun M. N-arginine dibasic convertase is a specific receptor for heparin-binding EGF-like growth factor that mediates cell migration. EMBO J. 2001 Jul 2;20(13):3342–3350. doi: 10.1093/emboj/20.13.3342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pierotti A. R., Prat A., Chesneau V., Gaudoux F., Leseney A. M., Foulon T., Cohen P. N-arginine dibasic convertase, a metalloendopeptidase as a prototype of a class of processing enzymes. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6078–6082. doi: 10.1073/pnas.91.13.6078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Prenzel N., Zwick E., Daub H., Leserer M., Abraham R., Wallasch C., Ullrich A. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999 Dec 23;402(6764):884–888. doi: 10.1038/47260. [DOI] [PubMed] [Google Scholar]
  35. Raab G., Klagsbrun M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta. 1997 Dec 9;1333(3):F179–F199. doi: 10.1016/s0304-419x(97)00024-3. [DOI] [PubMed] [Google Scholar]
  36. Thompson S. A., Higashiyama S., Wood K., Pollitt N. S., Damm D., McEnroe G., Garrick B., Ashton N., Lau K., Hancock N. Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. J Biol Chem. 1994 Jan 28;269(4):2541–2549. [PubMed] [Google Scholar]
  37. Winter A. G., Pierotti A. R. Gene expression of the dibasic-pair cleaving enzyme NRD convertase (N-arginine dibasic convertase) is differentially regulated in the GH3 pituitary and Mat-Lu prostate cell lines. Biochem J. 2000 Nov 1;351(Pt 3):755–764. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES