Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 1;367(Pt 1):121–128. doi: 10.1042/BJ20020439

The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells.

Gennady G Yegutkin 1, Tiina Henttinen 1, Sergei S Samburski 1, Jozef Spychala 1, Sirpa Jalkanen 1
PMCID: PMC1222875  PMID: 12099890

Abstract

Extracellular purines are important signalling molecules in the vasculature that are regulated by a network of cell surface ectoenzymes. By using human endothelial cells and normal and leukaemic lymphocytes as enzyme sources, we identified the following purine-converting ectoenzymes: (1) ecto-nucleotidases, NTP diphosphohydrolase/CD39 (EC 3.6.1.5) and ecto-5'-nucleotidase/CD73 (EC 3.1.3.5); (2) ecto-nucleotide kinases, adenylate kinase (EC 2.7.4.3) and nucleoside diphosphate kinase (EC 2.7.4.6); (3) ecto-adenosine deaminase (EC 3.5.4.4). Evidence for this was obtained by using enzyme assays with (3)H-labelled nucleotides and adenosine as substrates, direct evaluation of gamma-phosphate transfer from [gamma-(32)P]ATP to AMP/NDP, and bioluminescent measurement of extracellular ATP synthesis. In addition, incorporation of radioactivity into an approx. 20 kDa surface protein was observed following incubation of Namalwa B cells with [gamma-(32)P]ATP. Thus two opposite, ATP-generating and ATP-consuming, pathways coexist on the cell surface, where basal ATP release, re-synthesis of high-energy phosphoryls, and selective ecto-protein phosphorylation are counteracted by stepwise nucleotide breakdown with subsequent adenosine inactivation. The comparative measurements of enzymic activities indicated the predominance of the nucleotide-inactivating pathway via ecto-nucleotidase reactions on the endothelial cells. The lymphocytes are characterized by counteracting ATP-regenerating/adenosine-eliminating phenotypes, thus allowing them to avoid the lymphotoxic effects of adenosine and maintain surrounding ATP at a steady-state level. These results are in agreement with divergent effects of ATP and adenosine on endothelial function and haemostasis, and provide a novel regulatory mechanism of local agonist availability for nucleotide- or nucleoside-selective receptors within the vasculature.

Full Text

The Full Text of this article is available as a PDF (223.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airas L., Niemelä J., Salmi M., Puurunen T., Smith D. J., Jalkanen S. Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J Cell Biol. 1997 Jan 27;136(2):421–431. doi: 10.1083/jcb.136.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aldrich M. B., Blackburn M. R., Kellems R. E. The importance of adenosine deaminase for lymphocyte development and function. Biochem Biophys Res Commun. 2000 Jun 7;272(2):311–315. doi: 10.1006/bbrc.2000.2773. [DOI] [PubMed] [Google Scholar]
  3. Beigi R., Kobatake E., Aizawa M., Dubyak G. R. Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol. 1999 Jan;276(1 Pt 1):C267–C278. doi: 10.1152/ajpcell.1999.276.1.C267. [DOI] [PubMed] [Google Scholar]
  4. Clifford E. E., Martin K. A., Dalal P., Thomas R., Dubyak G. R. Stage-specific expression of P2Y receptors, ecto-apyrase, and ecto-5'-nucleotidase in myeloid leukocytes. Am J Physiol. 1997 Sep;273(3 Pt 1):C973–C987. doi: 10.1152/ajpcell.1997.273.3.C973. [DOI] [PubMed] [Google Scholar]
  5. Coade S. B., Pearson J. D. Metabolism of adenine nucleotides in human blood. Circ Res. 1989 Sep;65(3):531–537. doi: 10.1161/01.res.65.3.531. [DOI] [PubMed] [Google Scholar]
  6. Cronstein B. N. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol (1985) 1994 Jan;76(1):5–13. doi: 10.1152/jappl.1994.76.1.5. [DOI] [PubMed] [Google Scholar]
  7. Di Virgilio F., Chiozzi P., Ferrari D., Falzoni S., Sanz J. M., Morelli A., Torboli M., Bolognesi G., Baricordi O. R. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood. 2001 Feb 1;97(3):587–600. doi: 10.1182/blood.v97.3.587. [DOI] [PubMed] [Google Scholar]
  8. Dombrowski K. E., Ke Y., Brewer K. A., Kapp J. A. Ecto-ATPase: an activation marker necessary for effector cell function. Immunol Rev. 1998 Feb;161:111–118. doi: 10.1111/j.1600-065x.1998.tb01575.x. [DOI] [PubMed] [Google Scholar]
  9. Donaldson Scott H., Picher Maryse, Boucher Richard C. Secreted and cell-associated adenylate kinase and nucleoside diphosphokinase contribute to extracellular nucleotide metabolism on human airway surfaces. Am J Respir Cell Mol Biol. 2002 Feb;26(2):209–215. doi: 10.1165/ajrcmb.26.2.4650. [DOI] [PubMed] [Google Scholar]
  10. Enjyoji K., Sévigny J., Lin Y., Frenette P. S., Christie P. D., Esch J. S., 2nd, Imai M., Edelberg J. M., Rayburn H., Lech M. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med. 1999 Sep;5(9):1010–1017. doi: 10.1038/12447. [DOI] [PubMed] [Google Scholar]
  11. Franco R., Valenzuela A., Lluis C., Blanco J. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev. 1998 Feb;161:27–42. doi: 10.1111/j.1600-065x.1998.tb01569.x. [DOI] [PubMed] [Google Scholar]
  12. Ginés Silvia, Mariño Marta, Mallol Josefa, Canela Enric I., Morimoto Chikao, Callebaut Christian, Hovanessian Ara, Casadó Vicent, Lluis Carmen, Franco Rafael. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction. Biochem J. 2002 Jan 15;361(Pt 2):203–209. doi: 10.1042/0264-6021:3610203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Griffith D. A., Jarvis S. M. Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta. 1996 Oct 29;1286(3):153–181. doi: 10.1016/s0304-4157(96)00008-1. [DOI] [PubMed] [Google Scholar]
  14. Herrera C., Casadó V., Ciruela F., Schofield P., Mallol J., Lluis C., Franco R. Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Mol Pharmacol. 2001 Jan;59(1):127–134. [PubMed] [Google Scholar]
  15. Koziak K., Sévigny J., Robson S. C., Siegel J. B., Kaczmarek E. Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thromb Haemost. 1999 Nov;82(5):1538–1544. [PubMed] [Google Scholar]
  16. Kunapuli S. P., Daniel J. L. P2 receptor subtypes in the cardiovascular system. Biochem J. 1998 Dec 15;336(Pt 3):513–523. doi: 10.1042/bj3360513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lazarowski E. R., Boucher R. C., Harden T. K. Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. J Biol Chem. 2000 Oct 6;275(40):31061–31068. doi: 10.1074/jbc.M003255200. [DOI] [PubMed] [Google Scholar]
  18. Lazarowski E. R., Homolya L., Boucher R. C., Harden T. K. Identification of an ecto-nucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists. J Biol Chem. 1997 Aug 15;272(33):20402–20407. doi: 10.1074/jbc.272.33.20402. [DOI] [PubMed] [Google Scholar]
  19. MacKenzie A., Wilson H. L., Kiss-Toth E., Dower S. K., North R. A., Surprenant A. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity. 2001 Nov;15(5):825–835. doi: 10.1016/s1074-7613(01)00229-1. [DOI] [PubMed] [Google Scholar]
  20. Meghji P., Pearson J. D., Slakey L. L. Kinetics of extracellular ATP hydrolysis by microvascular endothelial cells from rat heart. Biochem J. 1995 Jun 15;308(Pt 3):725–731. doi: 10.1042/bj3080725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Norman G. A., Follett M. J., Hector D. A. Quantitative thin-layer chromatography of ATP and the products of its degradation in meat tissue. J Chromatogr. 1974 Mar 13;90(1):105–111. doi: 10.1016/s0021-9673(01)94779-x. [DOI] [PubMed] [Google Scholar]
  22. North R. A., Surprenant A. Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol. 2000;40:563–580. doi: 10.1146/annurev.pharmtox.40.1.563. [DOI] [PubMed] [Google Scholar]
  23. Ohta A., Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001 Dec 20;414(6866):916–920. doi: 10.1038/414916a. [DOI] [PubMed] [Google Scholar]
  24. Pull I., McIlwain H. Metabolism of ( 14 C)adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem J. 1972 Feb;126(4):965–973. doi: 10.1042/bj1260965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ralevic V., Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998 Sep;50(3):413–492. [PubMed] [Google Scholar]
  26. Redegeld F. A., Caldwell C. C., Sitkovsky M. V. Ecto-protein kinases: ecto-domain phosphorylation as a novel target for pharmacological manipulation? Trends Pharmacol Sci. 1999 Nov;20(11):453–459. doi: 10.1016/s0165-6147(99)01399-1. [DOI] [PubMed] [Google Scholar]
  27. Resta R., Yamashita Y., Thompson L. F. Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev. 1998 Feb;161:95–109. doi: 10.1111/j.1600-065x.1998.tb01574.x. [DOI] [PubMed] [Google Scholar]
  28. Spychala J., Mitchell B. S., Barankiewicz J. Adenosine metabolism during phorbol myristate acetate-mediated induction of HL-60 cell differentiation: changes in expression pattern of adenosine kinase, adenosine deaminase, and 5'-nucleotidase. J Immunol. 1997 May 15;158(10):4947–4952. [PubMed] [Google Scholar]
  29. Spychala J. Tumor-promoting functions of adenosine. Pharmacol Ther. 2000 Aug-Sep;87(2-3):161–173. doi: 10.1016/s0163-7258(00)00053-x. [DOI] [PubMed] [Google Scholar]
  30. Yegutkin G. G., Burnstock G. Steady-state binding of [3H]ATP to rat liver plasma membranes and competition by various purinergic agonists and antagonists. Biochim Biophys Acta. 1998 Aug 14;1373(1):227–236. doi: 10.1016/s0005-2736(98)00108-4. [DOI] [PubMed] [Google Scholar]
  31. Yegutkin G. G., Henttinen T., Jalkanen S. Extracellular ATP formation on vascular endothelial cells is mediated by ecto-nucleotide kinase activities via phosphotransfer reactions. FASEB J. 2001 Jan;15(1):251–260. doi: 10.1096/fj.00-0268com. [DOI] [PubMed] [Google Scholar]
  32. Yegutkin G., Bodin P., Burnstock G. Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5'-nucleotidase along with endogenous ATP from vascular endothelial cells. Br J Pharmacol. 2000 Mar;129(5):921–926. doi: 10.1038/sj.bjp.0703136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zimmermann H. 5'-Nucleotidase: molecular structure and functional aspects. Biochem J. 1992 Jul 15;285(Pt 2):345–365. doi: 10.1042/bj2850345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol. 2000 Nov;362(4-5):299–309. doi: 10.1007/s002100000309. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES