Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 1;367(Pt 1):239–246. doi: 10.1042/BJ20020841

Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2.

Tracey A Simmons-Willis 1, Albert S Koh 1, Thomas W Clarkson 1, Nazzareno Ballatori 1
PMCID: PMC1222880  PMID: 12117417

Abstract

Methylmercury (MeHg) readily crosses cell membrane barriers to reach its target tissue, the brain. Although it is generally assumed that this rapid transport is due to simple diffusion, recent studies have demonstrated that MeHg is transported as a hydrophilic complex, and possibly as an L-cysteine complex on the ubiquitous L-type large neutral amino acid transporters (LATs). To test this hypothesis, studies were carried out in Xenopus laevis oocytes expressing two of the major L-type carriers in humans, LAT1-4F2 heavy chain (4F2hc) and LAT2-4F2hc. Oocytes expressing LAT1-4F2hc or LAT2-4F2hc demonstrated enhanced uptake of [(14)C]MeHg when administered as the L-cysteine or D,L-homocysteine complexes, but not when administered as the D-cysteine, N -acetyl-L-cysteine, penicillamine or GSH complexes. Kinetic analysis of transport indicated that the apparent affinities ( K (m)) of MeHg-L-cysteine uptake by LAT1 and LAT2 (98+/-8 and 64+/-8 microM respectively) were comparable with those for methionine (99+/-9 and 161+/-11 microM), whereas the V (max) values were higher for MeHg-L-cysteine, indicating that it may be a better substrate than the endogenous amino acid. Uptake and efflux of [(3)H]methionine and [(14)C]MeHg-L-cysteine were trans -stimulated by leucine and phenylalanine, but not by glutamate, indicating that MeHg-L-cysteine is both a cis - and trans -substrate. In addition, [(3)H]methionine efflux was trans -stimulated by leucine and phenylalanine even in the presence of an inwardly directed methionine gradient, demonstrating concentrative transport by both LAT1 and LAT2. The present results describe a major molecular mechanism by which MeHg is transported across cell membranes and indicate that metal complexes may form a novel class of substrates for amino acid carriers. These transport proteins may therefore participate in metal ion homoeostasis and toxicity.

Full Text

The Full Text of this article is available as a PDF (209.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballatori N., Clarkson T. W. Developmental changes in the biliary excretion of methylmercury and glutathione. Science. 1982 Apr 2;216(4541):61–63. doi: 10.1126/science.7063871. [DOI] [PubMed] [Google Scholar]
  2. Ballatori N., Gatmaitan Z., Truong A. T. Impaired biliary excretion and whole body elimination of methylmercury in rats with congenital defect in biliary glutathione excretion. Hepatology. 1995 Nov;22(5):1469–1473. [PubMed] [Google Scholar]
  3. Boado R. J., Li J. Y., Nagaya M., Zhang C., Pardridge W. M. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12079–12084. doi: 10.1073/pnas.96.21.12079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chillarón J., Roca R., Valencia A., Zorzano A., Palacín M. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol. 2001 Dec;281(6):F995–1018. doi: 10.1152/ajprenal.2001.281.6.F995. [DOI] [PubMed] [Google Scholar]
  5. Clarkson T. W. The pharmacology of mercury compounds. Annu Rev Pharmacol. 1972;12:375–406. doi: 10.1146/annurev.pa.12.040172.002111. [DOI] [PubMed] [Google Scholar]
  6. Clarkson T., Cox C., Davidson P. W., Myers G. J. Mercury in fish. Science. 1998 Jan 23;279(5350):459–461. doi: 10.1126/science.279.5350.459c. [DOI] [PubMed] [Google Scholar]
  7. Clarkson Thomas W. The three modern faces of mercury. Environ Health Perspect. 2002 Feb;110 (Suppl 1):11–23. doi: 10.1289/ehp.02110s111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duelli R., Enerson B. E., Gerhart D. Z., Drewes L. R. Expression of large amino acid transporter LAT1 in rat brain endothelium. J Cereb Blood Flow Metab. 2000 Nov;20(11):1557–1562. doi: 10.1097/00004647-200011000-00005. [DOI] [PubMed] [Google Scholar]
  9. Goldin A. L. Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol. 1992;207:266–279. doi: 10.1016/0076-6879(92)07017-i. [DOI] [PubMed] [Google Scholar]
  10. HUGHES W. L. A physicochemical rationale for the biological activity of mercury and its compounds. Ann N Y Acad Sci. 1957 Apr 11;65(5):454–460. doi: 10.1111/j.1749-6632.1956.tb36650.x. [DOI] [PubMed] [Google Scholar]
  11. Kageyama T., Imura T., Matsuo A., Minato N., Shimohama S. Distribution of the 4F2 light chain, LAT1, in the mouse brain. Neuroreport. 2000 Nov 27;11(17):3663–3666. doi: 10.1097/00001756-200011270-00015. [DOI] [PubMed] [Google Scholar]
  12. Kajiwara Y., Yasutake A., Adachi T., Hirayama K. Methylmercury transport across the placenta via neutral amino acid carrier. Arch Toxicol. 1996;70(5):310–314. doi: 10.1007/s002040050279. [DOI] [PubMed] [Google Scholar]
  13. Kanai Y., Endou H. Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance. Curr Drug Metab. 2001 Dec;2(4):339–354. doi: 10.2174/1389200013338324. [DOI] [PubMed] [Google Scholar]
  14. Kanai Y., Segawa H., Miyamoto K. i., Uchino H., Takeda E., Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998 Sep 11;273(37):23629–23632. doi: 10.1074/jbc.273.37.23629. [DOI] [PubMed] [Google Scholar]
  15. Kerper L. E., Ballatori N., Clarkson T. W. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Physiol. 1992 May;262(5 Pt 2):R761–R765. doi: 10.1152/ajpregu.1992.262.5.R761. [DOI] [PubMed] [Google Scholar]
  16. Kido Y., Tamai I., Uchino H., Suzuki F., Sai Y., Tsuji A. Molecular and functional identification of large neutral amino acid transporters LAT1 and LAT2 and their pharmacological relevance at the blood-brain barrier. J Pharm Pharmacol. 2001 Apr;53(4):497–503. doi: 10.1211/0022357011775794. [DOI] [PubMed] [Google Scholar]
  17. Killian D. M., Chikhale P. J. Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci Lett. 2001 Jun 22;306(1-2):1–4. doi: 10.1016/s0304-3940(01)01810-9. [DOI] [PubMed] [Google Scholar]
  18. Leslie E. M., Deeley R. G., Cole S. P. Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology. 2001 Oct 5;167(1):3–23. doi: 10.1016/s0300-483x(01)00454-1. [DOI] [PubMed] [Google Scholar]
  19. Li L., Lee T. K., Meier P. J., Ballatori N. Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J Biol Chem. 1998 Jun 26;273(26):16184–16191. doi: 10.1074/jbc.273.26.16184. [DOI] [PubMed] [Google Scholar]
  20. Mastroberardino L., Spindler B., Pfeiffer R., Skelly P. J., Loffing J., Shoemaker C. B., Verrey F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature. 1998 Sep 17;395(6699):288–291. doi: 10.1038/26246. [DOI] [PubMed] [Google Scholar]
  21. Matsuo H., Tsukada S., Nakata T., Chairoungdua A., Kim D. K., Cha S. H., Inatomi J., Yorifuji H., Fukuda J., Endou H. Expression of a system L neutral amino acid transporter at the blood-brain barrier. Neuroreport. 2000 Nov 9;11(16):3507–3511. doi: 10.1097/00001756-200011090-00021. [DOI] [PubMed] [Google Scholar]
  22. Meier Christian, Ristic Zorica, Klauser Stefan, Verrey François. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J. 2002 Feb 15;21(4):580–589. doi: 10.1093/emboj/21.4.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mokrzan E. M., Kerper L. E., Ballatori N., Clarkson T. W. Methylmercury-thiol uptake into cultured brain capillary endothelial cells on amino acid system L. J Pharmacol Exp Ther. 1995 Mar;272(3):1277–1284. [PubMed] [Google Scholar]
  24. Palacín M., Estévez R., Bertran J., Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998 Oct;78(4):969–1054. doi: 10.1152/physrev.1998.78.4.969. [DOI] [PubMed] [Google Scholar]
  25. Pineda M., Fernández E., Torrents D., Estévez R., López C., Camps M., Lloberas J., Zorzano A., Palacín M. Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem. 1999 Jul 9;274(28):19738–19744. doi: 10.1074/jbc.274.28.19738. [DOI] [PubMed] [Google Scholar]
  26. Rossier G., Meier C., Bauch C., Summa V., Sordat B., Verrey F., Kühn L. C. LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem. 1999 Dec 3;274(49):34948–34954. doi: 10.1074/jbc.274.49.34948. [DOI] [PubMed] [Google Scholar]
  27. Segawa H., Fukasawa Y., Miyamoto K., Takeda E., Endou H., Kanai Y. Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem. 1999 Jul 9;274(28):19745–19751. doi: 10.1074/jbc.274.28.19745. [DOI] [PubMed] [Google Scholar]
  28. Taylor M. A., Smith L. D. Accumulation of free amino acids in growing Xenopus laevis oocytes. Dev Biol. 1987 Nov;124(1):287–290. doi: 10.1016/0012-1606(87)90480-5. [DOI] [PubMed] [Google Scholar]
  29. Verrey F., Jack D. L., Paulsen I. T., Saier M. H., Jr, Pfeiffer R. New glycoprotein-associated amino acid transporters. J Membr Biol. 1999 Dec 1;172(3):181–192. doi: 10.1007/s002329900595. [DOI] [PubMed] [Google Scholar]
  30. Verrey F., Meier C., Rossier G., Kühn L. C. Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Pflugers Arch. 2000 Aug;440(4):503–512. doi: 10.1007/s004240000274. [DOI] [PubMed] [Google Scholar]
  31. Wang W., Clarkson T. W., Ballatori N. gamma-Glutamyl transpeptidase and l-cysteine regulate methylmercury uptake by HepG2 cells, a human hepatoma cell line. Toxicol Appl Pharmacol. 2000 Oct 1;168(1):72–78. doi: 10.1006/taap.2000.9018. [DOI] [PubMed] [Google Scholar]
  32. Yanagida O., Kanai Y., Chairoungdua A., Kim D. K., Segawa H., Nii T., Cha S. H., Matsuo H., Fukushima J., Fukasawa Y. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001 Oct 1;1514(2):291–302. doi: 10.1016/s0005-2736(01)00384-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES