Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 1;367(Pt 1):13–18. doi: 10.1042/BJ20020932

A catalytic consensus motif for D-mannitol 2-dehydrogenase, a member of a polyol-specific long-chain dehydrogenase family, revealed by kinetic characterization of site-directed mutants of the enzyme from Pseudomonas fluorescens.

Mario Klimacek 1, Bernd Nidetzky 1
PMCID: PMC1222881  PMID: 12175334

Abstract

Lys-295, Asn-300 and His-303 of D-mannitol 2-dehydrogenase from Pseudomonas fluorescens were mutated individually into alanine (K295A, N300A and H303A respectively). Purified mutants displayed catalytic efficiencies for NAD(+)-dependent oxidation of D-mannitol 300-fold (H303A), 1000-fold (N300A) and approx. 400000-fold (K295A) below the wild-type level. Comparison of primary kinetic isotope effects on kinetic parameters for D-fructose reduction by wild-type and mutants at pH 10.0 demonstrate that Asn-300 has an auxiliary role in stabilization of the transition state of hydride transfer, and His-303 contributes to substrate positioning. The large solvent isotope effect of 11+/-1 on k (cat) for mannitol oxidation by K295A at pH((2)H) 10.5 suggests a role for Lys-295 in general base enzymic catalysis. Positional conservation of Lys-295, Asn-300 and His-303 across a family of polyol-specific long-chain dehydrogenases suggests a unique catalytic signature: Lys-Xaa(4)-Asn-Xaa(2)-His (where 'Xaa' denotes 'any amino acid').

Full Text

The Full Text of this article is available as a PDF (173.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benach J., Atrian S., Gonzàlez-Duarte R., Ladenstein R. The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 A resolution. J Mol Biol. 1998 Sep 18;282(2):383–399. doi: 10.1006/jmbi.1998.2015. [DOI] [PubMed] [Google Scholar]
  3. Hörer S., Stoop J., Mooibroek H., Baumann U., Sassoon J. The crystallographic structure of the mannitol 2-dehydrogenase NADP+ binary complex from Agaricus bisporus. J Biol Chem. 2001 May 2;276(29):27555–27561. doi: 10.1074/jbc.M102850200. [DOI] [PubMed] [Google Scholar]
  4. Jörnvall H., Persson B., Krook M., Atrian S., Gonzàlez-Duarte R., Jeffery J., Ghosh D. Short-chain dehydrogenases/reductases (SDR). Biochemistry. 1995 May 9;34(18):6003–6013. doi: 10.1021/bi00018a001. [DOI] [PubMed] [Google Scholar]
  5. Klimacek Mario, Nidetzky Bernd. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects. Biochemistry. 2002 Aug 6;41(31):10158–10165. doi: 10.1021/bi025517x. [DOI] [PubMed] [Google Scholar]
  6. Persson B., Jeffery J., Jörnvall H. Different segment similarities in long-chain dehydrogenases. Biochem Biophys Res Commun. 1991 May 31;177(1):218–223. doi: 10.1016/0006-291x(91)91970-n. [DOI] [PubMed] [Google Scholar]
  7. Persson B., Zigler J. S., Jr, Jörnvall H. A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins. Eur J Biochem. 1994 Nov 15;226(1):15–22. doi: 10.1111/j.1432-1033.1994.tb20021.x. [DOI] [PubMed] [Google Scholar]
  8. Ramaswamy S., Park D. H., Plapp B. V. Substitutions in a flexible loop of horse liver alcohol dehydrogenase hinder the conformational change and unmask hydrogen transfer. Biochemistry. 1999 Oct 19;38(42):13951–13959. doi: 10.1021/bi991731i. [DOI] [PubMed] [Google Scholar]
  9. Ruzheinikov S. N., Burke J., Sedelnikova S., Baker P. J., Taylor R., Bullough P. A., Muir N. M., Gore M. G., Rice D. W. Glycerol dehydrogenase. structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure. 2001 Sep;9(9):789–802. doi: 10.1016/s0969-2126(01)00645-1. [DOI] [PubMed] [Google Scholar]
  10. Schneider K. H., Giffhorn F., Kaplan S. Cloning, nucleotide sequence and characterization of the mannitol dehydrogenase gene from Rhodobacter sphaeroides. J Gen Microbiol. 1993 Oct;139(10):2475–2484. doi: 10.1099/00221287-139-10-2475. [DOI] [PubMed] [Google Scholar]
  11. Slatner M., Nidetzky B., Kulbe K. D. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Biochemistry. 1999 Aug 10;38(32):10489–10498. doi: 10.1021/bi990327g. [DOI] [PubMed] [Google Scholar]
  12. Williamson J. D., Stoop J. M., Massel M. O., Conkling M. A., Pharr D. M. Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7148–7152. doi: 10.1073/pnas.92.16.7148. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES