Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 15;367(Pt 2):335–345. doi: 10.1042/BJ20020536

Characterization of Ca2+/calmodulin-dependent protein kinase I as a myosin II regulatory light chain kinase in vitro and in vivo.

Futoshi Suizu 1, Yasuaki Fukuta 1, Kozue Ueda 1, Takahiro Iwasaki 1, Hiroshi Tokumitsu 1, Hiroshi Hosoya 1
PMCID: PMC1222884  PMID: 12081505

Abstract

Ca(2+)/calmodulin (CaM)-dependent protein kinase I (CaM-KI), which is a member of the multifunctional CaM-K family, is thought to be involved in various Ca(2+)-signalling pathways. In this report, we demonstrate that CaM-KI activated by an upstream kinase (CaM-K kinase), but not unactivated CaM-KI, phosphorylates myosin II regulatory light chain (MRLC) efficiently ( K (cat), 1.7 s(-1)) and stoichiometrically (approximately 0.8 mol of phosphate/mol) in a Ca(2+)/CaM-dependent manner in vitro. One-dimensional phosphopeptide mapping and mutational analysis of MRLC revealed that the activated CaM-KI monophosphorylates only Ser-19 in MRLC. Transient expression of the Ca(2+)/CaM-independent form of CaM-KI (CaM-KI(1-293)) in HeLa cells induced Ser-19 phosphorylation of myosin, II accompanied by reorganization of actin filaments in the peripheral region of the cells. CaM-KI-induced reorganization of actin filaments was suppressed by co-expression of non-phosphorylatable MRLC mutants (S19A and T18AS19A). Furthermore, a kinase-negative form of CaM-KI (CaM-KI(1-293,K49E)) significantly reduced reorganization of actin filaments, indicating a dominant negative effect. This is the first demonstration that the activation of the CaM-KI cascade induces myosin II phosphorylation, resulting in regulation of actin filament organization in mammalian cells.

Full Text

The Full Text of this article is available as a PDF (435.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bresnick A. R. Molecular mechanisms of nonmuscle myosin-II regulation. Curr Opin Cell Biol. 1999 Feb;11(1):26–33. doi: 10.1016/s0955-0674(99)80004-0. [DOI] [PubMed] [Google Scholar]
  2. Chang D. C., Meng C. A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo. J Cell Biol. 1995 Dec;131(6 Pt 1):1539–1545. doi: 10.1083/jcb.131.6.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chin D., Means A. R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000 Aug;10(8):322–328. doi: 10.1016/s0962-8924(00)01800-6. [DOI] [PubMed] [Google Scholar]
  4. Chou Y. H., Rebhun L. I. Purification and characterization of a sea urchin egg Ca2+-calmodulin-dependent kinase with myosin light chain phosphorylating activity. J Biol Chem. 1986 Apr 25;261(12):5389–5395. [PubMed] [Google Scholar]
  5. Chrzanowska-Wodnicka M., Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 1996 Jun;133(6):1403–1415. doi: 10.1083/jcb.133.6.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ebashi S. A simple method of preparing actin-free myosin from smooth muscle. J Biochem. 1976 Jan;79(1):229–231. doi: 10.1093/oxfordjournals.jbchem.a131052. [DOI] [PubMed] [Google Scholar]
  7. Edelman A. M., Lin W. H., Osterhout D. J., Bennett M. K., Kennedy M. B., Krebs E. G. Phosphorylation of smooth muscle myosin by type II Ca2+/calmodulin-dependent protein kinase. Mol Cell Biochem. 1990 Sep 3;97(1):87–98. doi: 10.1007/BF00231704. [DOI] [PubMed] [Google Scholar]
  8. Eto K., Takahashi N., Kimura Y., Masuho Y., Arai K., Muramatsu M. A., Tokumitsu H. Ca(2+)/Calmodulin-dependent protein kinase cascade in Caenorhabditis elegans. Implication in transcriptional activation. J Biol Chem. 1999 Aug 6;274(32):22556–22562. doi: 10.1074/jbc.274.32.22556. [DOI] [PubMed] [Google Scholar]
  9. Fluck R. A., Miller A. L., Jaffe L. F. Slow calcium waves accompany cytokinesis in medaka fish eggs. J Cell Biol. 1991 Dec;115(5):1259–1265. doi: 10.1083/jcb.115.5.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerashchenko Bogdan I., Ueda Kozue, Hino Mizuki, Hosoya Hiroshi. Phosphorylation at threonine-18 in addition to phosphorylation at serine-19 on myosin-II regulatory light chain is a mitosis-specific event. Cytometry. 2002 Mar 1;47(3):150–157. doi: 10.1002/cyto.10059. [DOI] [PubMed] [Google Scholar]
  11. Haribabu B., Hook S. S., Selbert M. A., Goldstein E. G., Tomhave E. D., Edelman A. M., Snyderman R., Means A. R. Human calcium-calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. EMBO J. 1995 Aug 1;14(15):3679–3686. doi: 10.1002/j.1460-2075.1995.tb00037.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ikebe M., Hartshorne D. J. Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem. 1985 Aug 25;260(18):10027–10031. [PubMed] [Google Scholar]
  13. Iwasaki T., Murata-Hori M., Ishitobi S., Hosoya H. Diphosphorylated MRLC is required for organization of stress fibers in interphase cells and the contractile ring in dividing cells. Cell Struct Funct. 2001 Dec;26(6):677–683. doi: 10.1247/csf.26.677. [DOI] [PubMed] [Google Scholar]
  14. Jensen K. F., Ohmstede C. A., Fisher R. S., Sahyoun N. Nuclear and axonal localization of Ca2+/calmodulin-dependent protein kinase type Gr in rat cerebellar cortex. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2850–2853. doi: 10.1073/pnas.88.7.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Joseph J. D., Means A. R. Identification and characterization of two Ca2+/CaM-dependent protein kinases required for normal nuclear division in Aspergillus nidulans. J Biol Chem. 2000 Dec 8;275(49):38230–38238. doi: 10.1074/jbc.M006422200. [DOI] [PubMed] [Google Scholar]
  16. Katoh K., Kano Y., Amano M., Kaibuchi K., Fujiwara K. Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts. Am J Physiol Cell Physiol. 2001 Jun;280(6):C1669–C1679. doi: 10.1152/ajpcell.2001.280.6.C1669. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lauffenburger D. A., Horwitz A. F. Cell migration: a physically integrated molecular process. Cell. 1996 Feb 9;84(3):359–369. doi: 10.1016/s0092-8674(00)81280-5. [DOI] [PubMed] [Google Scholar]
  19. Lee J. C., Edelman A. M. A protein activator of Ca(2+)-calmodulin-dependent protein kinase Ia. J Biol Chem. 1994 Jan 21;269(3):2158–2164. [PubMed] [Google Scholar]
  20. Mansfield P. J., Shayman J. A., Boxer L. A. Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase. Blood. 2000 Apr 1;95(7):2407–2412. [PubMed] [Google Scholar]
  21. Matsushita M., Nairn A. C. Characterization of the mechanism of regulation of Ca2+/ calmodulin-dependent protein kinase I by calmodulin and by Ca2+/calmodulin-dependent protein kinase kinase. J Biol Chem. 1998 Aug 21;273(34):21473–21481. doi: 10.1074/jbc.273.34.21473. [DOI] [PubMed] [Google Scholar]
  22. Murata-Hori M., Fukuta Y., Ueda K., Iwasaki T., Hosoya H. HeLa ZIP kinase induces diphosphorylation of myosin II regulatory light chain and reorganization of actin filaments in nonmuscle cells. Oncogene. 2001 Dec 13;20(57):8175–8183. doi: 10.1038/sj.onc.1205055. [DOI] [PubMed] [Google Scholar]
  23. Murata-Hori M., Suizu F., Iwasaki T., Kikuchi A., Hosoya H. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett. 1999 May 14;451(1):81–84. doi: 10.1016/s0014-5793(99)00550-5. [DOI] [PubMed] [Google Scholar]
  24. Nairn A. C., Greengard P. Purification and characterization of Ca2+/calmodulin-dependent protein kinase I from bovine brain. J Biol Chem. 1987 May 25;262(15):7273–7281. [PubMed] [Google Scholar]
  25. Nowak G., Pestic-Dragovich L., Hozák P., Philimonenko A., Simerly C., Schatten G., de Lanerolle P. Evidence for the presence of myosin I in the nucleus. J Biol Chem. 1997 Jul 4;272(27):17176–17181. doi: 10.1074/jbc.272.27.17176. [DOI] [PubMed] [Google Scholar]
  26. Ohnishi S. T., Barr J. K. A simplified method of quantitating protein using the biuret and phenol reagents. Anal Biochem. 1978 May;86(1):193–200. doi: 10.1016/0003-2697(78)90334-2. [DOI] [PubMed] [Google Scholar]
  27. Petrache I., Verin A. D., Crow M. T., Birukova A., Liu F., Garcia J. G. Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2001 Jun;280(6):L1168–L1178. doi: 10.1152/ajplung.2001.280.6.L1168. [DOI] [PubMed] [Google Scholar]
  28. Picciotto M. R., Cohn J. A., Bertuzzi G., Greengard P., Nairn A. C. Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1992 Jun 25;267(18):12742–12752. [PubMed] [Google Scholar]
  29. Poperechnaya A., Varlamova O., Lin P. J., Stull J. T., Bresnick A. R. Localization and activity of myosin light chain kinase isoforms during the cell cycle. J Cell Biol. 2000 Oct 30;151(3):697–708. doi: 10.1083/jcb.151.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Saitoh M., Ishikawa T., Matsushima S., Naka M., Hidaka H. Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem. 1987 Jun 5;262(16):7796–7801. [PubMed] [Google Scholar]
  31. Sakagami H., Umemiya M., Saito S., Kondo H. Distinct immunohistochemical localization of two isoforms of Ca2+/calmodulin-dependent protein kinase kinases in the adult rat brain. Eur J Neurosci. 2000 Jan;12(1):89–99. doi: 10.1046/j.1460-9568.2000.00883.x. [DOI] [PubMed] [Google Scholar]
  32. Sakurada K., Seto M., Sasaki Y. Dynamics of myosin light chain phosphorylation at Ser19 and Thr18/Ser19 in smooth muscle cells in culture. Am J Physiol. 1998 Jun;274(6 Pt 1):C1563–C1572. doi: 10.1152/ajpcell.1998.274.6.C1563. [DOI] [PubMed] [Google Scholar]
  33. Sellers J. R. Myosins: a diverse superfamily. Biochim Biophys Acta. 2000 Mar 17;1496(1):3–22. doi: 10.1016/s0167-4889(00)00005-7. [DOI] [PubMed] [Google Scholar]
  34. Sheng M., Thompson M. A., Greenberg M. E. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science. 1991 Jun 7;252(5011):1427–1430. doi: 10.1126/science.1646483. [DOI] [PubMed] [Google Scholar]
  35. Soderling T. R., Stull J. T. Structure and regulation of calcium/calmodulin-dependent protein kinases. Chem Rev. 2001 Aug;101(8):2341–2352. doi: 10.1021/cr0002386. [DOI] [PubMed] [Google Scholar]
  36. Suizu F., Ueda K., Iwasaki T., Murata-Hori M., Hosoya H. Activation of actin-activated MgATPase activity of myosin II by phosphorylation with MAPK-activated protein kinase-1b (RSK-2). J Biochem. 2000 Sep;128(3):435–440. doi: 10.1093/oxfordjournals.jbchem.a022771. [DOI] [PubMed] [Google Scholar]
  37. Tan J. L., Ravid S., Spudich J. A. Control of nonmuscle myosins by phosphorylation. Annu Rev Biochem. 1992;61:721–759. doi: 10.1146/annurev.bi.61.070192.003445. [DOI] [PubMed] [Google Scholar]
  38. Tokumitsu H., Brickey D. A., Glod J., Hidaka H., Sikela J., Soderling T. R. Activation mechanisms for Ca2+/calmodulin-dependent protein kinase IV. Identification of a brain CaM-kinase IV kinase. J Biol Chem. 1994 Nov 18;269(46):28640–28647. [PubMed] [Google Scholar]
  39. Tokumitsu H., Enslen H., Soderling T. R. Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase. J Biol Chem. 1995 Aug 18;270(33):19320–19324. doi: 10.1074/jbc.270.33.19320. [DOI] [PubMed] [Google Scholar]
  40. Tokumitsu H., Iwabu M., Ishikawa Y., Kobayashi R. Differential regulatory mechanism of Ca2+/calmodulin-dependent protein kinase kinase isoforms. Biochemistry. 2001 Nov 20;40(46):13925–13932. doi: 10.1021/bi010863k. [DOI] [PubMed] [Google Scholar]
  41. Tokumitsu H., Muramatsu M. a., Ikura M., Kobayashi R. Regulatory mechanism of Ca2+/calmodulin-dependent protein kinase kinase. J Biol Chem. 2000 Jun 30;275(26):20090–20095. doi: 10.1074/jbc.M002193200. [DOI] [PubMed] [Google Scholar]
  42. Tokumitsu H., Soderling T. R. Requirements for calcium and calmodulin in the calmodulin kinase activation cascade. J Biol Chem. 1996 Mar 8;271(10):5617–5622. doi: 10.1074/jbc.271.10.5617. [DOI] [PubMed] [Google Scholar]
  43. Tokumitsu H., Takahashi N., Eto K., Yano S., Soderling T. R., Muramatsu M. Substrate recognition by Ca2+/Calmodulin-dependent protein kinase kinase. Role of the arg-pro-rich insert domain. J Biol Chem. 1999 May 28;274(22):15803–15810. doi: 10.1074/jbc.274.22.15803. [DOI] [PubMed] [Google Scholar]
  44. Totsukawa G., Yamakita Y., Yamashiro S., Hartshorne D. J., Sasaki Y., Matsumura F. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol. 2000 Aug 21;150(4):797–806. doi: 10.1083/jcb.150.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ueda Kozue, Murata-Hori Maki, Tatsuka Masaaki, Hosoya Hiroshi. Rho-kinase contributes to diphosphorylation of myosin II regulatory light chain in nonmuscle cells. Oncogene. 2002 Aug 29;21(38):5852–5860. doi: 10.1038/sj.onc.1205747. [DOI] [PubMed] [Google Scholar]
  46. Weber L. P., Van Lierop J. E., Walsh M. P. Ca2+-independent phosphorylation of myosin in rat caudal artery and chicken gizzard myofilaments. J Physiol. 1999 May 1;516(Pt 3):805–824. doi: 10.1111/j.1469-7793.1999.0805u.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yoneda Y. Nucleocytoplasmic protein traffic and its significance to cell function. Genes Cells. 2000 Oct;5(10):777–787. doi: 10.1046/j.1365-2443.2000.00366.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES